PLP - 39 TOPIC 39 — CARDINALITY OF FINITE SETS

Demirbaş & Rechnitzer

FINITE SETS AND PIGEONS

SIZE OF A FINITE SET

We defined |A| to be the number of elements in A

When we count the elements in A we count off "one, two, three, ... six"

We build a function $f: A
ightarrow \{1, 2, \ldots, 6\}$ so that

- Injective *different* objects counted by *different* numbers
- Surjective each number is used to count an object So that function is a *bijection*.

DEFINITION:

Let A, B be sets. They have the same cardinality if $A = B = \emptyset$ or if there is a bijection from A to B. In this case we write |A| = |B| and say the sets are equinumerous. If A and B are not equinumerous, so no bijection between them, then we write $|A| \neq |B|$

- Special case: $A = \emptyset$ we write |A| = 0. No bijection between empty sets.
- Finite: $|A| = n \in \mathbb{N}$ then have a bijection $f: A o \{1, 2, \dots, n\}$.
- If |A| = n = |B| then we have

$$f:A
ightarrow \{1,\ldots,n\} \qquad g:B
ightarrow \{1,\ldots,n\}$$

• Definition in terms of bijection allows us to handle infinite sets.

so $(g^{-1} \circ f): A \to B$

FINITE NON-EQUINUMEROUS SETS

Consider $A = \{a_1, a_2, a_3, a_4, a_5\}$ and $B = \{b_1, b_2, b_3\}$

• Since $5 = |A| \neq |B| = 3$, so no bijection between them

- Easy to build a surjection f: A
 ightarrow B
- But cannot build an injection $g: A \rightarrow B$:

$$g(a_1) = b_1 \qquad g(a_2) = b_2 \qquad g(a_3) = b_3$$

• Use the pigeonhole principle to formalise this.

$g(a_4) = ? \qquad g(a_5) = ?$

PIGEONHOLE PRINCIPLE

THEOREM: (DIRICHLET).

If n objects are placed in k boxes then

- If n < k then at least one box has zero objects in it
- If n > k then at least one box has at least two objects in it

Can refine n > k case: at least one box has at least $\lceil n/k \rceil$ objects in it.

PROOF.

Prove contrapositive of each:

- Assume each box contains at least one object, then total number of objects n > k.
- Assume each box contains at most one object, then the total number of objects n < k.

COROLLARY:

Let A, B be *finite* sets and let $f : A \rightarrow B$. Then

- If |A| > |B| then f is not an injection
- If |A| < |B| then f is not a surjection

PROOF.

We prove each point in turn.

- Assume that |A| > |B|. Then, by PHP, when the images of elements of A are placed into B by the function, at least one element of B is the image of two elements of A. Hence there are $a_1, a_2 \in A$ so that $f(a_1) = f(a_2)$, and so f is not injective.
- Now assume that |A| < |B|. Then, by PHP, when the images of elements of A are placed into B by the function, at least one element of B is not the image of any element of A. That is, there is $b \in B$ so that for every $a \in A$, $f(a) \neq b$, and so f is not surjective.

If f is an injection then $|A| \leq |B|$ If f is a surjection then $|A| \ge |B|$

PIGEON FLAVOURED EXAMPLE

PROPOSITION:

There exist two powers of 3 whose difference is divisible by 220.

PROOF.

• Consider the sequence of 221 numbers

$$3^0, 3^1, 3^2, 3^3, \dots, 3^{219}, 3^{22}$$

and compute their remainders when divided by 220.

- There are at most 220 possible remainders, but 221 numbers in the sequence
- Hence two numbers have the same remainder: $3^i = 220k + r, 3^j = 220\ell + r$
- So their difference is a multiple of 220 as required
- Checking remainders modulo 220 you can quickly find that $220 \mid (3^{20} 3^0)$

20

PROPOSITION:

Place 5 points in an equilateral triangle of side-length 1. There is a pair at distance no greater than 0.5

PROOF.

- Split the triangle into 4 sub-triangles as shown
- The subtriangle side-length is $\frac{1}{2}$
- One sub-triangle must contain 2 points
- So those points are at distance $\leq \frac{1}{2}$

$\textbf{BIG DATA} \implies \textbf{SPURIOUS CORRELATIONS}$

Consider

- How many function "shapes" you can draw
- How many time-series data sets exist
- By PHP, each "shape" will fit many data-sets
- Those data-sets appear correlated

Search-engine your way to "Spurious Correlations" by Tyler Vigen