PLP - 39
 TOPIC 39 - CARDINALITY OF FINITE SETS

Demirbaş \& Rechnitzer

FINITE SETS AND PIGEONS

SIZE OF A FINITE SET

We defined $|A|$ to be the number of elements in A

When we count the elements in A we count off "one, two, three, ... six"
We build a function $f: A \rightarrow\{1,2, \ldots, 6\}$ so that

- Injective - different objects counted by different numbers
- Surjective - each number is used to count an object

So that function is a bijection.

EQUAL CARDINALITIES AND BIJECTIONS

DEFINITION:

Let A, B be sets. They have the same cardinality if $A=B=\varnothing$ or if there is a bijection from A to B. In this case we write $|A|=|B|$ and say the sets are equinumerous.

If A and B are not equinumerous, so no bijection between them, then we write $|A| \neq|B|$

- Special case: $A=\varnothing$ we write $|A|=0$. No bijection between empty sets.
- Finite: $|A|=n \in \mathbb{N}$ then have a bijection $f: A \rightarrow\{1,2, \ldots, n\}$.
- If $|A|=n=|B|$ then we have

$$
f: A \rightarrow\{1, \ldots, n\} \quad g: B \rightarrow\{1, \ldots, n\} \quad \text { so } \quad\left(g^{-1} \circ f\right): A \rightarrow B
$$

- Definition in terms of bijection allows us to handle infinite sets.

Consider $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}$ and $B=\left\{b_{1}, b_{2}, b_{3}\right\}$

- Since $5=|A| \neq|B|=3$, so no bijection between them
- Easy to build a surjection $f: A \rightarrow B$
- But cannot build an injection $g: A \rightarrow B$:

$$
g\left(a_{1}\right)=b_{1} \quad g\left(a_{2}\right)=b_{2} \quad g\left(a_{3}\right)=b_{3} \quad g\left(a_{4}\right)=? \quad g\left(a_{5}\right)=?
$$

- Use the pigeonhole principle to formalise this.

PIGEONHOLE PRINCIPLE

THEOREM: (DIRICHLET).

If n objects are placed in k boxes then

- If $n<k$ then at least one box has zero objects in it
- If $n>k$ then at least one box has at least two objects in it

Can refine $n>k$ case: at least one box has at least $\lceil n / k\rceil$ objects in it.

PROOF.

Prove contrapositive of each:

- Assume each box contains at least one object, then total number of objects $n \geq k$.
- Assume each box contains at most one object, then the total number of objects $n \leq k$.

FINITE NON-EQUINUMEROUS SETS - CONTINUED

COROLLARY:

Let A, B be finite sets and let $f: A \rightarrow B$. Then

- If $|A|>|B|$ then f is not an injection If f is an injection then $|A| \leq|B|$
- If $|A|<|B|$ then f is not a surjection

If f is a surjection then $|A| \geq|B|$

PROOF.

We prove each point in turn.

- Assume that $|A|>|B|$. Then, by PHP, when the images of elements of A are placed into B by the function, at least one element of B is the image of two elements of A. Hence there are $a_{1}, a_{2} \in A$ so that $f\left(a_{1}\right)=f\left(a_{2}\right)$, and so f is not injective.
- Now assume that $|A|<|B|$. Then, by PHP, when the images of elements of A are placed into B by the function, at least one element of B is not the image of any element of A. That is, there is $b \in B$ so that for every $a \in A, f(a) \neq b$, and so f is not surjective.

PROPOSITION:

There exist two powers of 3 whose difference is divisible by 220.

PROOF.

- Consider the sequence of 221 numbers

$$
3^{0}, 3^{1}, 3^{2}, 3^{3}, \ldots, 3^{219}, 3^{220}
$$

and compute their remainders when divided by 220.

- There are at most 220 possible remainders, but 221 numbers in the sequence
- Hence two numbers have the same remainder: $3^{i}=220 k+r, 3^{j}=220 \ell+r$
- So their difference is a multiple of 220 as required

Checking remainders modulo 220 you can quickly find that $220 \mid\left(3^{20}-3^{0}\right)$

PIGEON FLAVOURED EXAMPLE \#2

PROPOSITION:

Place 5 points in an equilateral triangle of side-length 1 . There is a pair at distance no greater than 0.5

PROOF.

- Split the triangle into 4 sub-triangles as
shown
- The subtriangle side-length is $\frac{1}{2}$
- One sub-triangle must contain 2 points
- So those points are at distance $\leq \frac{1}{2}$

BIG DATA \Longrightarrow SPURIOUS CORRELATIONS

Consider

- How many function "shapes" you can draw
- How many time-series data sets exist
- By PHP, each "shape" will fit many data-sets
- Those data-sets appear correlated

Search-engine your way to "Spurious Correlations" by Tyler Vigen

