PLP - 40
 TOPIC 40 - TOWARDS INFINITE SETS

Demirbaş \& Rechnitzer

CARDINALITY COMPARISONS BY FUNCTION

In previous lecture we saw for finite sets A, B

- If $f: A \rightarrow B$ is an injection then $|A| \leq|B|$
- If $g: A \rightarrow B$ is an surjection then $|A| \geq|B|$
- If $h: A \rightarrow B$ is an bijection then $|A|=|B|$
and we use the last one to define equinumerous for any sets
Need to prove that this is well defined

THEOREM:

Let A, B, C be sets, then "being equinumerous" is an equivalence relation

- reflexive: $|A|=|A|$
- symmetric: $|A|=|B| \Longrightarrow|B|=|A|$
- transitive: $|A|=|B|$ and $|B|=|C| \Longrightarrow|A|=|C|$

"Being equinumerous" is an equivalence relation

PROOF.

We have to prove that it is reflexive, symmetric and transitive. It suffices to construct appropriate bijections.

- The identity $i_{A}: A \rightarrow A$ is a bijection, so $|A|=|A|$
- If $|A|=|B|$ then there is a bijection $f: A \rightarrow B$. Theorem: since f is a bijection, its inverse $f^{-1}: B \rightarrow A$ exists and is also a bijection. Hence $|B|=|A|$.
- If $|A|=|B|$ and $|B|=|C|$ then there exist bijections $f: A \rightarrow B$ and $g: B \rightarrow C$. Theorem: the composition $(g \circ f): A \rightarrow C$ is a bijection. Hence $|A|=|C|$.
Let's put this bijection definition to work on infinite sets

PROPOSITION:

Let $\mathcal{E}=\{n \in \mathbb{N}$ s.t. n is even $\}$ and $\mathcal{O}=\{n \in \mathbb{N}$ s.t. n is odd $\}$, then $|\mathcal{O}|=|\mathcal{E}|$.
Further, $|\mathbb{N}|=|\mathcal{E}|$.

PROOF.

The function $f: \mathcal{O} \rightarrow \mathcal{E}$ defined by $f(n)=n+1$ is a bijection.
The function $g: \mathbb{N} \rightarrow \mathcal{E}$ defined by $g(n)=2 n$ is a bijection.

$\mathcal{E} \subset \mathbb{N} \quad$ but \quad| 1 | 2 | 3 | 4 | \ldots |
| :---: | :---: | :---: | :---: | :---: |
| \downarrow | \downarrow | \downarrow | \downarrow | \downarrow |
| 2 | 4 | 6 | 8 | \ldots |

FINITE AND INFINITE BEHAVE VERY DIFFERENTLY

Consider sets A, B with $A \subset B$

- If A, B are finite then PHP tells us $|A| \neq|B|$ - no bijection possible
- If A, B are infinite then a bijection may be possible

$$
\begin{array}{rlrl}
|\mathcal{E}| & =|\mathbb{N}| & f: \mathbb{N} \rightarrow \mathcal{E} & \\
|\{1,4,9,16, \ldots\}| & =|\mathbb{N}| & g: \mathbb{N} \rightarrow\{1,4,9,16, \ldots\} & \\
g(n)=n^{2}
\end{array}
$$

DEFINITION: INFINITE SET.

Informal: an infinite set keeps on going: $1,2,3,4, \ldots$
Formal: a set A is infinite if there is a bijection from A to a proper subset of A

This definition is due to Dedekin, but we will use more precise ones.

A FIRST INFINITY

First infinite set we meet is the natural numbers.

DEFINITION:

- A set A is called denumerable if there is a bijection $f: \mathbb{N} \rightarrow A$
- We denote the cardinality of any denumerable set by \aleph_{0} - "aleph-null"
- When a set A is finite or denumerable we say that it is countable
- When a set is not countable it is uncountable
- Since bijection has bijective inverse $f: \mathbb{N} \rightarrow A \Longleftrightarrow f^{-1}: A \rightarrow \mathbb{N}$
- We now know that $\mathcal{E}, \mathcal{O},\{1,4,9,16, \ldots\}$ are all denumerable, and so countable
- Are all subsets of \mathbb{N} countable?
- Are supersets of \mathbb{N} such as $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ denumerable?
- Do uncountable sets exist?

