PLP - 40 TOPIC 40 — TOWARDS INFINITE SETS

Demirbaş & Rechnitzer

TOWARDS INFINITY

CARDINALITY COMPARISONS BY FUNCTION

In previous lecture we saw for *finite* sets A, B

- If f:A
 ightarrow B is an injection then $|A|\leq |B|$
- If g: A
 ightarrow B is an surjection then $|A| \ge |B|$
- If h:A
 ightarrow B is an bijection then |A|=|B|

and we use the last one to *define* equinumerous for *any* sets

Need to prove that this is well defined

THEOREM:

Let A, B, C be sets, then "being equinumerous" is an equivalence relation

- reflexive: |A| = |A|
- symmetric: $|A| = |B| \implies |B| = |A|$
- transitive: |A| = |B| and $|B| = |C| \implies |A| = |C|$

EQUINUMEROUS IS AN EQUIVALENCE RELATION

"Being equinumerous" is an equivalence relation

PROOF.

We have to prove that it is reflexive, symmetric and transitive. It suffices to construct appropriate bijections.

- The identity $i_A: A
 ightarrow A$ is a bijection, so |A| = |A|
- If |A| = |B| then there is a bijection f: A o B. Theorem: since f is a bijection, its inverse $f^{-1}: B o A$ exists and is also a bijection. Hence |B| = |A|.
- If |A| = |B| and |B| = |C| then there exist bijections $f: A \to B$ and $g: B \to C$. Theorem: the composition $(g \circ \overline{f}) : A o C$ is a bijection. Hence |A| = |C|.

Let's put this bijection definition to work on *infinite* sets

TWO EXAMPLES

PROPOSITION:

Let $\mathcal{E} = \{n \in \mathbb{N} \text{ s.t. } n \text{ is even}\}$ and $\mathcal{O} = \{n \in \mathbb{N} \text{ s.t. } n \text{ is odd}\}$, then $|\mathcal{O}| = |\mathcal{E}|$. Further, $|\mathbb{N}| = |\mathcal{E}|$.

PROOF.

The function $f: \mathcal{O} \to \mathcal{E}$ defined by f(n) = n+1 is a bijection. The function $g: \mathbb{N} \to \mathcal{E}$ defined by g(n) = 2n is a bijection.

FINITE AND INFINITE BEHAVE VERY DIFFERENTLY

Consider sets A, B with $A \subset B$

- If A, B are *finite* then PHP tells us $|A| \neq |B|$ no bijection possible
- If A, B are *infinite* then a bijection may be possible

$$egin{aligned} |\mathcal{E}| &= |\mathbb{N}| & f: \mathbb{N} o \mathcal{E} \ |\left\{1,4,9,16,\ldots
ight\}| &= |\mathbb{N}| & g: \mathbb{N} o \{1,4,9,16\} \end{aligned}$$

DEFINITION: INFINITE SET.

Informal: an infinite set keeps on going: $1, 2, 3, 4, \ldots$

Formal: a set A is infinite if there is a bijection from A to a proper subset of A

This definition is due to Dedekin, but we will use more precise ones.

$egin{array}{c} f(n) &= 2n \ 16, \ldots \} & g(n) &= n^2 \end{array}$

A FIRST INFINITY

First infinite set we meet is the natural numbers.

DEFINITION:

- A set A is called denumerable if there is a bijection $f:\mathbb{N} o A$
- We denote the cardinality of any denumerable set by \aleph_0 "aleph-null"
- When a set A is finite or denumerable we say that it is countable
- When a set is not countable it is **uncountable**

- Since bijection has bijective inverse $f:\mathbb{N} o A\iff f^{-1}:A o\mathbb{N}$
- We now know that $\mathcal{E}, \mathcal{O}, \{1, 4, 9, 16, \ldots\}$ are all denumerable, and so countable
- Are all subsets of \mathbb{N} countable?
- Are supersets of \mathbb{N} such as $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ denumerable?
- Do uncountable sets exist?