PLP - 41
 TOPIC 41 — DENUMERABLE SETS

Demirbaş \& Rechnitzer

DENUMERABLE SETS

When a set B is denumerable we can "list out" its elements.

- Since denumerable there is a bijection $f: \mathbb{N} \rightarrow B$
- So we can write B as

$$
\begin{aligned}
B & =\{f(1), f(2), f(3), f(4), \ldots\} \\
& =\left\{b_{1}, b_{2}, b_{3}, b_{4}, \ldots\right\} \quad b_{n}=f(n)
\end{aligned}
$$

This list has two nice properties

- Since f is injective, the list does not repeat

$$
k \neq n \Longrightarrow b_{k}=f(k) \neq f(n)=b_{n}
$$

- Since f is surjective, any given $y \in B$ appears at some finite position

$$
\forall y \in B, \exists n \in \mathbb{N} \text { s.t. } y=f(n)=b_{n}
$$

A LIST GIVES A BIJECTION

Say we can write the elements of B in a nice list

$$
B=\left\{b_{1}, b_{2}, b_{3}, b_{4}, \ldots\right\}
$$

then we can use this to construct a bijection: $g: \mathbb{N} \rightarrow B$.
What does nice mean? First define

$$
g: \mathbb{N} \rightarrow B \quad \text { by } \quad g(k)=b_{k}
$$

Then the list is nice when

- it does not repeat - so that g is injective
- any given element $y \in B$ appears at a finite position

$$
\forall y \in B, \exists n \in \mathbb{N} \text { s.t. } y=g(n)=b_{n}
$$

so g is surjective
So the construction of such a list proves a bijection from \mathbb{N} to B, and so B is denumerable.

PROPOSITION:

The set of all integers is denumerable.

Scratch

- We need to list out all the integers so that
- the list does not repeat
- any given integer appears at a finite position in the list
- $\operatorname{Try} \mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
- $\operatorname{Try} \mathbb{Z}=\{1,2,3, \ldots, 0,-1,-2,-3, \ldots\}$

What $n \in \mathbb{N}$ gives $f(n)=0$?
What $n \in \mathbb{N}$ gives $f(n)=0$?

- Try again: $\mathbb{Z}=\{0,1,-1,2,-2,3,-3, \ldots\}$

$\operatorname{PROOF}|\mathbb{N}|=|\mathbb{Z}|$

List $\mathbb{Z}=\{0,1,-1,2,-2,3,-3, \ldots\}$ or equivalently

1	2	3	4	5	6	7	\ldots
\downarrow							
0	1	-1	2	-2	3	-3	\ldots

PROOF.

List the elements $z \in \mathbb{Z}$ as above, so that

- if $z \geq 1$, then z appears at position $2 z$
- if $z \leq 0$, then z appears at position $1-2 z$

The list then

- does not repeat
- and any given $z \in \mathbb{Z}$ appears at some finite position and thus the list defines a bijection between \mathbb{N} and \mathbb{Z}.

NOTHING BETWEEN DENUMERABLE AND FINITE

THEOREM:

Let A, B be sets with $A \subseteq B$. If B is denumerable then A is countable.

Proof sketch:

- If A is finite then it is countable
- If A is infinite then it suffices to construct a bijection $f: \mathbb{N} \rightarrow A$.
- Since B is denumerable, list out its elements $B=\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, \ldots\right\}$
- Since $A \subseteq B$, delete elements to get $A=\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6} \ldots\right\} \quad$ (example only)
- Then $A=\left\{b_{1}, b_{4}, b_{6}, b_{9}, b_{13}, \ldots\right\}$
- Since the B-list did not repeat, this list does not repeat
- Since any given $a \in A$ is also in B, that a appears at a finite position (earlier than in B-list)
- Hence A is denumerable, and so countable

PROPOSITION:

Let $k \in \mathbb{N}$, then following sets are denumerable:

$$
k \mathbb{Z}=\{k n: n \in \mathbb{Z}\} \quad \text { and } \quad k \mathbb{N}=\{k n: n \in \mathbb{N}\}
$$

We could establish bijections from those sets to \mathbb{Z} or \mathbb{N}, or use previous theorem.

PROOF.

For any $k \in \mathbb{N}$ the sets are subsets of \mathbb{Z}. Since \mathbb{Z} is denumerable, it follows that the sets are countable (by the previous theorem). Further, since the sets are not finite, it follows that they must be denumerable.

PROPOSITION:

Let A, B be countable sets, then $A \cap B$ and $A \cup B$ are all countable.

Proof sketch

- If A, B are finite, then all are finite, so countable
- Since $A \cap B \subseteq A$, by the previous theorem, this is countable.
- Since A, B countable, $B-A$ is countable. Then list carefully

$$
A=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\} \quad(B-A)=\left\{b_{1}, b_{2}, b_{3}, \ldots\right\}
$$

then combine the lists by alternating

$$
A \cup B=A \cup(B-A)=\left\{a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, \ldots\right\}
$$

If A finite, then $A \cup B=\left\{a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, b_{3}, \ldots\right\}$

CARTESIAN PRODUCT PRESERVES COUNTABLE

PROPOSITION:

Let A, B be countable sets, then $A \times B$ is countable.

Scratchwork - If neither finite then $A=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ and $B=\left\{b_{1}, b_{2}, b_{3}, \ldots\right\}$ and so

\times	a_{1}	a_{2}	a_{3}	a_{4}	\cdots
b_{1}	$\left(a_{1}, b_{1}\right)$	$\left(a_{2}, b_{1}\right)$	$\left(a_{3}, b_{1}\right)$	$\left(a_{4}, b_{1}\right)$	\cdots
b_{2}	$\left(a_{1}, b_{2}\right)$	$\left(a_{2}, b_{2}\right)$	$\left(a_{3}, b_{2}\right)$	$\left(a_{4}, b_{2}\right)$	\cdots
b_{3}	$\left(a_{1}, b_{3}\right)$	$\left(a_{2}, b_{3}\right)$	$\left(a_{3}, b_{3}\right)$	$\left(a_{4}, b_{3}\right)$	\cdots
b_{4}	$\left(a_{1}, b_{4}\right)$	$\left(a_{2}, b_{4}\right)$	$\left(a_{3}, b_{4}\right)$	$\left(a_{4}, b_{4}\right)$	\cdots
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots

Construct list of pairs by careful sweep of the table.

PROOF

PROOF.
Since A, B are denumerable we can construct the following table

\times	a_{1}	a_{2}	a_{3}	\cdots
b_{1}	$\left(a_{1}, b_{1}\right)$	$\left(a_{2}, b_{1}\right)$	$\left(a_{3}, b_{1}\right)$	\cdots
b_{2}	$\left(a_{1}, b_{2}\right)$	$\left(a_{2}, b_{2}\right)$	$\left(a_{3}, b_{2}\right)$	\cdots
b_{3}	$\left(a_{1}, b_{3}\right)$	$\left(a_{2}, b_{3}\right)$	$\left(a_{3}, b_{3}\right)$	\cdots
\vdots	\vdots	\vdots	\vdots	\ddots

By sweeping through diagonals $\swarrow \swarrow \swarrow$ we list all the elements of $A \times B$:

$$
A \times B=\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{3}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{1}, b_{3}\right), \ldots\right\}
$$

This list does not repeat, and any given $\left(a_{k}, b_{n}\right)$ appears at finite position, so $A \times B$ is denumerable.

PROPOSITION:

The set of all rational numbers \mathbb{Q} is denumerable.

Very strange since \mathbb{Q} is dense: between any two rationals you can always find another rational.

Proof-sketch

- Note that any $q \in \mathbb{Q}$ can be written uniquely as $q=\frac{a}{b}$ with $a \in \mathbb{Z}, b \in \mathbb{N}$ and $\operatorname{gcd}(a, b)=1$
- We can rewrite rationals as $P=\{(a, b) \in \mathbb{Z} \times \mathbb{N}$ s.t. $\operatorname{gcd}(a, b)=1\}$
- There is a bijection $f: \mathbb{Q} \rightarrow P$ given by $f(a / b)=(a, b)$, where a / b is the reduced fraction
- Since $P \subseteq \mathbb{Z} \times \mathbb{N}$, we know P is denumerable.
- Thus since $|P|=|\mathbb{Q}|$ we have that \mathbb{Q} is denumerable also.

