PLP - 42 TOPIC 42 — UNCOUNTABLE SETS

Demirbaş & Rechnitzer

UNCOUNTABLE

CAN WE FIND ANYTHING BIGGER?

So if A, \overline{B} are denumerable, then

- $A \cup B$ is denumerable
- $A \times B$ is denumerable

Further if C_1, C_2, C_3, \ldots are all denumerable, then for any fixed $n \in \mathbb{N}$

- $C_1 \cup C_2 \cup \cdots \cup C_n$ is denumerable
- $C_1 \times C_2 \times \cdots \times C_n$ is denumerable

How can we find anything bigger?

We will prove the interval (0,1) is uncountable, and so $\mathbb R$ is uncountable.

FACT:

• Every rational number has a repeating decimal expansion

$$1/3 = 0.3333333\dots 2/11 =$$

• Some rationals have two repeating expansions

 $1/2 = 0.500000 \cdots = 0.499999 \ldots$

This only happens when the denominator b of the reduced fraction a/b is a product of 2's and 5's. In that case the two expansions terminate with 0's or 9's.

• Every irrational number has a unique non-repeating decimal expansion.

0.181818...

PROPOSITION: (CANTOR 1891).

The open interval $(0,1) = \{x \in \mathbb{R} \text{ s.t. } 0 < x < 1\}$ is uncountable.

Proof sketch

- We prove the result by contradiction. Assume that (0,1) is countable.
- Since it is infinite, it is denumerable, and so there is a bijection $f:\mathbb{N} o (0,1)$
- We can use this bijection to list *all* the numbers in (0, 1)

f(2)0.21892653...

f(3)0.15206327...

If two expansions then choose expansion that ends in 0's.

THE DIAGONAL IS THE KEY

Arrange the expansions in a big array and consider the diagonal

We know $0.1111111 \cdots \le z \le 0.222222 \cdots$, so z must be somewhere in the table.

- If z = f(k) then must have $z_k = f_{k,k}$. But $\overline{f_{k,k}} = d_k \neq \overline{z_k}$ by construction.
- Hence z is not in the table, so contradicts assumption that f is a bijection.

COROLLARY:

The set of all real numbers is uncountable. Additionally $|(0,1)| = |\mathbb{R}| = c$.

PROOF.

We proved earlier that if a set B is countable, then any subset A is countable. Hence (by the contrapositive), if the subset A is uncountable, then the superset B is uncountable. So since $(0,1)\subset\mathbb{R}$ is uncountable and $(0,1)\subseteq\mathbb{R}$, we know that \mathbb{R} is uncountable. To show that the sets are equinumerous, it is sufficient to show that the function

$$g:(0,1) o \mathbb{R} \qquad g(x)=rac{1}{1-x}$$

is a bijection. This is a good exercise.

