PLP - 42
 TOPIC 42 - UNCOUNTABLE SETS

Demirbaş \& Rechnitzer

UNCOUNTABLE

CAN WE FIND ANYTHING BIGGER?

So if A, B are denumerable, then

- $A \cup B$ is denumerable
- $A \times B$ is denumerable

Further if $C_{1}, C_{2}, C_{3}, \ldots$ are all denumerable, then for any fixed $n \in \mathbb{N}$

- $C_{1} \cup C_{2} \cup \cdots \cup C_{n}$ is denumerable
- $C_{1} \times C_{2} \times \cdots \times C_{n}$ is denumerable

How can we find anything bigger?
We will prove the interval $(0,1)$ is uncountable, and so \mathbb{R} is uncountable.

FACT:

- Every rational number has a repeating decimal expansion

$$
1 / 3=0.333333 \ldots \quad 2 / 11=0.181818 \ldots
$$

- Some rationals have two repeating expansions

$$
1 / 2=0.500000 \cdots=0.499999 \ldots
$$

This only happens when the denominator b of the reduced fraction a / b is a product of 2's and 5's. In that case the two expansions terminate with 0's or 9's.

- Every irrational number has a unique non-repeating decimal expansion.

CANTOR'S DIAGONAL ARGUMENT

PROPOSITION: (CANTOR 1891).

The open interval $(0,1)=\{x \in \mathbb{R}$ s.t. $0<x<1\}$ is uncountable.

Proof sketch

- We prove the result by contradiction. Assume that $(0,1)$ is countable.
- Since it is infinite, it is denumerable, and so there is a bijection $f: \mathbb{N} \rightarrow(0,1)$
- We can use this bijection to list all the numbers in $(0,1)$

$f(1)$	$0.78304492 \ldots$
$f(2)$	$0.21892653 \ldots$
$f(3)$	$0.15206327 \ldots$
\vdots	\vdots

If two expansions then choose expansion that ends in 0 's.

Arrange the expansions in a big array and consider the diagonal

$f(1)=$			8	3			4	4		
$f(2)=$	0.	2	1	8	8	9	2	6		,
$f(3)=$	0.	1	5	2	0	0	6	3		2
$f(4)=$	0.	5	4	3	6		2	9		1
$f(5)=$	0.	8	9	7	5	5	1	7		5
$f(6)=$		0	3	4	8		0	4		,
$f(7)=$	0.	7	4	3	7	7	5	8		
$\Delta=$		7	1	2			1	4		
$z=$		1	2	1	1		2	1		

- Denote the $k^{t h}$ digit of $f(n)$ as $f_{n, k}$
- The diagonal $\Delta=0 . d_{1} d_{2} d_{3} d_{4} \ldots$
- The $n^{\text {th }}$ digit $d_{n}=f_{n, n}$
- Create a new number $z=0 . z_{1} z_{2} z_{3} z_{4} \ldots$ via

$$
z_{n}= \begin{cases}1 & \text { if } d_{n} \neq 1 \\ 2 & \text { if } d_{n}=1\end{cases}
$$

Chosen so that $\forall n \in \mathbb{N}, z_{n} \neq d_{n}=f_{n, n}$.

We know $0.111111 \cdots \leq z \leq 0.222222 \ldots$, so z must be somewhere in the table.

- If $z=f(k)$ then must have $z_{k}=f_{k, k}$. But $f_{k, k}=d_{k} \neq z_{k}$ by construction.
- Hence z is not in the table, so contradicts assumption that f is a bijection.

THE REALS ARE UNCOUNTABLE

COROLLARY:

The set of all real numbers is uncountable. Additionally $|(0,1)|=|\mathbb{R}|=c$.

PROOF.

We proved earlier that if a set B is countable, then any subset A is countable. Hence (by the contrapositive), if the subset A is uncountable, then the superset B is uncountable.
So since $(0,1) \subset \mathbb{R}$ is uncountable and $(0,1) \subseteq \mathbb{R}$, we know that \mathbb{R} is uncountable.
To show that the sets are equinumerous, it is sufficient to show that the function

$$
g:(0,1) \rightarrow \mathbb{R} \quad g(x)=\frac{1}{1-x}-\frac{1}{x}
$$

is a bijection. This is a good exercise.

