# PLP - 43 TOPIC 43 — MORE INFINITIES

Demirbaş & Rechnitzer

# CANTOR'S THEOREM AND MORE INFINITIES

## **COMPARING DIFFERENT INFINITIES**

We know that  $\mathbb{N} \subset \mathbb{R}$  and we proved that  $|\mathbb{N}| \neq |\mathbb{R}|$ . So want to state

$$\aleph_0 = |\mathbb{N}| < |\mathbb{R}| = c$$

We can make this precise by extending ideas from finite sets A, B:

- If f:A
  ightarrow B is an injection then  $|A|\leq |B|$
- If h:A
  ightarrow B is an bijection then |A|=|B|

#### **DEFINITION:**

Let A, B be sets.

- We write  $|A| \leq |B|$  when there is an injection from A to B.
- Further, we write |A| < |B| when there is an injection from A to B but no bijection.

$$|A| < |B| \qquad \Longleftrightarrow \qquad ig(|A| \le |B|ig)$$

 $|) \wedge ig(|A| 
eq |B|ig)$ 

### **CONTINUUM HYPOTHESIS**

• Cantor's diagonal argument proves that

 $leph_0 = |\mathbb{N}| < |\mathbb{R}| = c$ 

• Is there any infinity between these two? More precisely?

 $\exists A ext{ s.t. } |\mathbb{N}| < |A| < |\mathbb{R}|$ 

CONJECTURE 2. CONTINUUM HYPOTHESIS (CANTOR 1878).

There is no set A so that  $\aleph_0 < |A| < c$ .

- Gödel (1940) showed that it cannot be disproved from standard set theory axioms (Zermelo–Fraenkel)
- Cohen (1963) showed that it cannot be proved from standard set theorem axioms
- So (technically) not really correct to call it a conjecture

et theory axioms (Zermelo–Fraenkel) theorem axioms

### **BIGGER INFINITIES**

Are there bigger infinities?

#### **THEOREM: (CANTOR'S THEOREM, 1891).**

Let A be a set. Then  $\left|A\right| < \left|\mathcal{P}\left(A
ight)
ight|$ 

#### Scratch work

• Easy to find an injection from A to  $\mathcal{P}(A)$  . Here are two examples

$$egin{aligned} f: A &
ightarrow \mathcal{P}\left(A
ight) & f(a) &= \{a \ h: A &
ightarrow \mathcal{P}\left(A
ight) & h(a) &= A \end{aligned}$$

This proves that  $|A| \leq |\mathcal{P}(A)|$ 

• We prove there is no bijection from A to  $\mathcal{P}(A)$  by showing there cannot be a surjection



#### **GOOD AND BAD**

To explore, let  $A=\{1,2,3\}$  and consider f,h from previous slide.

$$egin{array}{ll} f(1) = \{1\} & f(2) = \{2\} & f(1) = \{1,3\} & h(2) & h(2)$$

Notice that

- ullet  $\forall x \in A, x \in f(x)$
- ullet  $\forall x \in A, x 
  ot \in h(x)$

More generally, if we have any function  $g:A
ightarrow \mathcal{P}\left(A
ight)$  then

- if  $x \in g(x)$  then call x a good point, and
- if  $x \notin g(x)$  then call x a bad point Then build sets of all the good and bad points

$$G=\{x\in A ext{ s.t. } x\in g(x)\}$$
 and  $B=\{$ 

Notice that  $G,B\subseteq A$  and so  $G,B\in\mathcal{P}\left(A
ight)$  .

# $egin{aligned} f(3) &= \{3\} \ h(3) &= \{1,2\} \end{aligned}$

 $\{x\in A ext{ s.t. } x
ot\in g(x)\}$ 

## THE BAD SET IS MORE INTERESTING

#### **PROOF.**

Assume, to the contrary that there is a surjection  $g: A \to \mathcal{P}(A)$ 

- Construct the "bad" set  $B = \{x \in A ext{ s.t. } x 
  ot\in \overline{g(x)}\} \subseteq A$
- Now since  $B \in \mathcal{P}(A)$  and g is surjective, there must be some  $b \in A$  so that g(b) = B
- We must have that either  $b \in B$  or  $b \notin B$ ? Is it good or bad?

 $\circ$  When  $b \in B$ , by definition of B must have  $b \notin B$  — contradiction  $\circ$  When  $b 
ot\in B$ , by definition of B must have  $b \in B$  — contradiction

• These contradictions mean there is no b so that g(b) = B, and so g is not surjective Then since we have constructed an injection from  $f: A \to \mathcal{P}(A)$ , it follows that  $|A| < |\mathcal{P}(A)|$ .

This immediately gives  $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})|$ 

With work you can prove that  $|\mathcal{P}(\mathbb{N})| = |\mathbb{R}|$  — see Cantor-Schröder-Bernstein Theorem

### **KEEP GOING**

#### $\left|A ight|<\left|\mathcal{P}\left(A ight) ight|$ and $\left|\mathbb{N} ight|<\left|\mathcal{P}\left(\mathbb{N} ight) ight|$

## Do it again $- |\mathbb{N}| < |\mathcal{P}(\mathbb{N})| < |\mathcal{P}(\mathcal{P}(\mathbb{N}))|$ And again $- |\mathbb{N}| < |\mathcal{P}(\mathbb{N})| < |\mathcal{P}(\mathcal{P}(\mathbb{N}))| < |\mathcal{P}(\mathcal{P}(\mathcal{P}(\mathbb{N})))|$

#### **COROLLARY:**

There are an infinite number of different infinites.

#### PROOF.

Starting with  $\mathbb{N}$ , Cantor's theorem tells us that  $\mathcal{P}(\mathbb{N})$  is a larger infinite set. Then  $\mathcal{P}(\mathcal{P}(\mathbb{N}))$  is larger again. By repeatedly taking power sets, you create an infinitely long sequence of larger and larger infinite sets.

## **START TO FINISH**

Remember where we started:

- Basic definitions of sets and subsets
- Statements, logical operators and truth tables

Look where we got to:

- Diagonal argument there are different types of infinity
- Cantor's theorem there are an infinite number of different infinities

**Congratulations!**