Worksheet for Week 1

Before the first class watch the videos 1,2 , and 3 in https://personal.math.ubc.ca/~PLP/auxiliary. html

Examples to cover in class

1. List the elements of the following sets.

- $\left\{n^{2} \mid n \in \mathbb{Z}\right\}$
- $\left\{x \in \mathbb{Z} \mid x^{2}-2=0\right\}$
- $\left\{x \in \mathbb{R} \mid x^{2}-2=0\right\}$
- $\left\{x^{2} \mid x \in(-3,1]\right\}$
- $B=\left\{x \in A \left\lvert\, x<\frac{1}{2 \pi}\right.\right\}$ given that $A=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$.

2. Let $A=\{\ldots,-8,-4,0,4,8, \ldots\}$ and $B=\{\ldots,-6,-3,0,3,6, \ldots\}$. Write the sets A and B in set builder notation.

Now, let C be the set of all elements which are sums of an element from A and an element from B. Write C in a set builder notation in two different ways.
What can we say about the elements of this set? Is $1 \in C, 2 \in C, 3 \in C, 5 \in C$? Discuss.
3. Consider the following problem:

Assume that we got rid of all currency and introduced new coins worth 3 'stones' and 7 'stones' (stone is our new currency now). Also assume that everyone has enough coins. Write in set-builder notation the set of prices an object can be charged.
(E.g: If we only had coins worth 4 and 19 stones, we could still charge 1 stone, since someone could give us 5 coins of 4 and we could return 1 coin of 19).

Before the next lecture, watch videos 4,5, and 7 in https://personal.math.ubc.ca/~PLP/auxiliary. html

