Worksheet for Week 10

1. For which values of $a, b \in \mathbb{N}$ does the set $\phi=\{(x, y) \in \mathbb{Z} \times \mathbb{Z}: a x+b y=6\}$ define a function?
2. Is the set $\theta=\{((x, y),(5 y, 4 x, x+y)): x, y \in \mathbb{R}\}$ a function? If so, what are its domain and its range? Hint: How can you visualize the range?
3. (Old Final) Suppose that $f: A \rightarrow B$ is a function and let C be a subset of A.
(a) Prove that $f(A)-f(C) \subseteq f(A-C)$.
(b) Find a counterexample for $f(A-C) \subseteq f(A)-f(C)$.

Hint: Think about for which type of functions part (b) fails.
4. Let $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ be a function defined as $f(a, b)=4 a+6 b$. Explicitly describe the set $S=\operatorname{range}(f)$. Prove your answer.
Before the following examples, watch video 33 in https://personal.math.ubc.ca/~PLP/auxiliary. html.
5. A function $f: \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ is defined as $f(n)=(2 n+1, n+2)$. Verify whether this function is injective and whether it is surjective.
6. Let A, B be nonempty sets. Prove that if there is a bijection $f: A \rightarrow B$, then there is a bijection from $\mathcal{P}(A)$, the power set of A, to $\mathcal{P}(B)$, the power set of B.
Hint: How can you send a subset of A to a subset of B, knowing how to send each element of A to an element of B ?
7. Suppose that $f: A \rightarrow B$ and C_{1}, C_{2} are subsets of A. Show that if f is injective, then $f\left(C_{1} \cap C_{2}\right)=f\left(C_{1}\right) \cap f\left(C_{2}\right)$.
8. (a) Let $f: A \rightarrow B$ be a surjective function and let $D_{1}, D_{2} \subseteq B$. Show that if $f^{-1}\left(D_{1}\right) \subseteq f^{-1}\left(D_{2}\right)$, then $D_{1} \subseteq D_{2}$.
(b) Construct an example that shows the above is not true when f is not surjective.
9. Prove that the function $f: \mathbb{R}-\{2 / 5\} \rightarrow \mathbb{R}-\{-3 / 5\}$ given by $f(x)=\frac{3 x}{2-5 x}$ is bijective.
10. In this question, correct answers without justifications are not sufficient.
(a) Find a function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ which is injective but not surjective.
(b) Find a function $g: \mathbb{Z} \rightarrow \mathbb{Z}$ which is surjective but not injective.

Discuss how this question would change if we replaced \mathbb{Z} with a finite set. Would you be able to find such functions?
Note: This is related to the "cardinality" of a set and we will come back to this topic in the last section.
Before the following week, watch videos 34 and 35 inhttps://personal.math.ubc.ca/~PLP/auxiliary. html.

