Worksheet for Week 11

1. Consider $f: A \rightarrow B$. Prove that f is injective if and only if $X=f^{-1}(f(X))$ for all $X \subseteq A$.
2. (old final question) Prove that the function $f: \mathbb{R}-\{1\} \rightarrow \mathbb{R}-\{2\}$ given by $f(x)=\frac{2 x}{x-1}$ is bijective.
3. Let a, b, c, a be real numbers. Define the 2×2 matrix A by

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

and let S be the set of all 2×2 matrices, two matrices $A_{1}, A_{2} \in S$ are equal if $a_{1}=a_{2}, b_{1}=b_{2}, c_{1}=$ $c_{2}, d_{1}=d_{2}$. Let $f: S \rightarrow S$ be a function defined by

$$
f\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Find $f \circ f$. Is f invertible? If so, what is f^{-1} ?
Hint: You don't need to know anything about matrices more than what is given in the question.
4. Let E, F, G be non-empty sets and let $f: E \rightarrow F, g: F \rightarrow G$ and $h: G \rightarrow E$ be three functions. Prove that if $g \circ f$ and $h \circ g$ are bijective then the three functions f, g, h are bijective.
Hint: Try to show that each function is both injective and surjective.
5. Let A and B be nonempty sets. Prove that if f is an injection, then $f(A-B)=f(A)-f(B)$.
6. This question is related to Pigenhole Principle - you can do it if there is time. Let $A=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}$ be a nonempty set of n distinct natural numbers. Prove that there exists a nonempty subset of A for which the sum of its elements is divisible by n.
Hint: Consider the sums $s_{k}=a_{1}+a_{2}+\cdots+a_{k}$.
Before the following examples, watch videos 36,37 , and 38 in https://personal.math.ubc.ca/~PLP/ auxiliary.html.
7. Let $n \in \mathbb{N}, n \geq 2$, and $a, b, c \in \mathbb{Z}$. Prove that if $a b \equiv 1(\bmod n)$, then $\forall c \not \equiv 0(\bmod n)$ we have $a c \not \equiv 0(\bmod n)$.
8. Let $x \in \mathbb{R}$ satisfy $x^{7}+5 x^{2}-3=0$. Then prove that x is irrational.
9. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a real sequence. Then, recall that we say $\left(x_{n}\right)$ converges to L if

$$
\forall \epsilon>0, \exists N \in \mathbb{N}, \forall n \geq N,\left|x_{n}-L\right|<\epsilon
$$

Prove that if a sequence $\left(y_{n}\right)$ converges, then the limit is unique.
Before the following week, watch videos 39 and 40 in https://personal.math.ubc.ca/~PLP/auxiliary. html.

