Worksheet for Week 4

Note: Order of the quantifiers matters.

1. Consider the following statements and discuss which ones are true.

- $\forall m \in \mathbb{Z}, \exists n \in \mathbb{Z}$ s.t. $m^{2}<n$.
- $\exists m \in \mathbb{Z}$ s.t. $\forall n \in \mathbb{Z}, m<n$.
- $\exists m, n \in \mathbb{Z}$, s.t. $m^{2}<n$.
- $\forall m, n \in \mathbb{Z}, m^{2}<n$.

2. Negate the statements below and determine whether the statements or their negations are true.

- $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}$, s.t. $y+5=x$.
- $\forall x \in \mathbb{R}, \exists n \in \mathbb{N}$, s.t. $x^{n}>0$.
- $\forall n \in \mathbb{R},\left(n^{2}\right.$ is even $) \Longrightarrow(n$ is even $)$.
- $\exists y \in \mathbb{R}$, s.t. $\forall x \in \mathbb{R}, x^{2} \geq y$.
- $\exists x \in \mathbb{R}$, s.t. $\forall y \in \mathbb{R},(y \leq x-1) \Longrightarrow\left(y^{2}-x^{2} \geq 4\right)$.

3. Prove the following statement:

$$
\forall x \in \mathbb{R}, \forall y \in \mathbb{R},(\forall z>0,|x-y|<z) \Longrightarrow(x=y)
$$

Hint: How can you rewrite the statement?
4. Let \mathbb{I} denote the set of irrationals. Prove that $\forall x \in \mathbb{I},\left(k \in \mathbb{Q} \backslash\{0\} \Longrightarrow \frac{x}{k} \in \mathbb{I}\right)$.

Now, use this result, and the fact that $\pi \in \mathbb{I}$ to show

$$
\forall n \in \mathbb{N}, \exists y \in \mathbb{I} \text { s.t. } x>y>0
$$

5. Let A be a set. We say that a function $f: A \rightarrow \mathbb{R}$ is bounded if $\exists M \in \mathbb{R}$, s.t. $\forall x \in A,|f(x)| \leq M$.

Use this definition to show that $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as $f(x)=3 x-7$ is not bounded.
Hint: If the statement above is the definition of a bounded function, what should a function that is NOT bounded satisfy?
6. Fact: $\forall x \in \mathbb{R}, \exists n \in \mathbb{N}$, s.t. $n \geq x$.

Use this fact to show

$$
\forall \epsilon>0, \exists N \in \mathbb{N} \text { s.t. } \forall n \in \mathbb{N},(n>N) \Longrightarrow\left(\frac{1}{n}<\epsilon\right) .
$$

Hint: For $\epsilon, n>0$, we have $\left(\frac{1}{n}<\epsilon\right) \Longleftrightarrow\left(\frac{1}{\epsilon}<n\right)$.
Before next week, watch videos 16 and 17 in https://personal.math.ubc.ca/~PLP/auxiliary.html.

