Worksheet for Week 5

Definition: Let $L \in \mathbb{R}$. We say that a sequence $\left(x_{n}\right)$ converges to L, denoted by $x_{n} \rightarrow L$ iff,

$$
\forall \epsilon>0, \exists N \in \mathbb{N} \text {, s.t. } \forall n \geq N,\left|x_{n}-L\right| \leq \epsilon
$$

1. Show that $\left(x_{n}\right)=\left(\frac{n}{n^{2}+1}\right)$ converges to 0 .

Hint: For $n \in \mathbb{N}$, we have $\frac{n}{n^{2}+1}<\frac{1}{n}$.
2. Show that $\left(x_{n}\right)=\left(\frac{n}{\sqrt{n^{2}+1}}\right)$ doesn't converge to 0 .

Hint: What does it mean for a sequence to NOT converge to a number?
3. Let $\left(x_{n}\right),\left(b_{n}\right)$ be sequences. Prove that if $0<x_{n}<b_{n} \forall n \in \mathbb{N}$ and $b_{n} \rightarrow 0$, then $x_{n} \rightarrow 0$.

Hint: If $0<x_{n}<b_{n}$, the $\left|x_{n}\right|<\left|b_{n}\right|$. Thus, if we can make $\left|b_{n}\right|<\epsilon$, then we will have $\left|x_{n}\right|<\epsilon$.
Definition: Let A be a set and $L \in \mathbb{R}$. We say that a function $f: A \rightarrow \mathbb{R}$ has the limit L as x goes to a, denoted by $\lim _{x \rightarrow a} f(x)=L$, if

$$
\forall \epsilon>0, \exists \delta>0, \text { s.t. }(0<|x-a|<\delta) \Longrightarrow(|f(x)-L|<\epsilon)
$$

4. Show that $\lim _{x \rightarrow 1}(5 x+3)=8$.

Hint: Be careful that δ may depend on ϵ.
5. Prove that $\lim _{x \rightarrow 2}\left(\frac{1}{x}\right)=\frac{1}{2}$.

Hint: You may need to have more than one condition on δ.
6. Let f, g be functions and $L_{1}, L_{2} \in \mathbb{R}$. Show that if $\lim _{x \rightarrow a} f(x)=L_{1}$ and $\lim _{x \rightarrow a} g(x)=L_{2}$, then $\lim _{x \rightarrow a}(f+g)(x)=$ $L_{1}+L_{2}$.
Hint: Triangle inequality and a good scratchwork will be crucial.
Before next week, watch videos 18 and 19 in https://personal.math.ubc.ca/~PLP/auxiliary.html.

