Worksheet for Week 6

1. Consider the sequence defined by:

$$
\left\{\begin{array}{l}
u_{1}=\frac{1}{2} \\
u_{n+1}=\frac{u_{n}+1}{u_{n}+2}
\end{array} \quad \text { for } n \in \mathbb{N} .\right.
$$

Prove that $0<u_{n}<1$ for every $n \in \mathbb{N}$.
2. The Fibonacci numbers are defined by the recurrence

$$
F_{1}=1 \quad F_{2}=1 \quad \text { and } \quad F_{n}=F_{n-1}+F_{n-2} \quad \text { for } \quad n>2 .
$$

Show that for every $k \in \mathbb{N}, F_{4 k}$ is a multiple of 3 .
3. Prove that $7^{n}-2^{n}$ is divisible by 5 for all $n \in \mathbb{N}$.
4. Let $n \in \mathbb{N}$. Prove that $\forall n \geq 7, n!>3^{n}$.
5. Let $f(x)=x \ln x, x>0$ and $n \in \mathbb{N}$. Let $f^{(n)}(x)$ denote the nth derivative of $f(x)$. Prove that if $n \geq 3$, then

$$
f^{(n)}(x)=(-1)^{n} \frac{(n-2)!}{x^{n-1}}
$$

Before the following examples, watch videos 20 and 21 inhttps://personal.math.ubc.ca/~PLP/auxilia:y. html.
6. Use strong induction to prove the following statement: Suppose you begin with a pile of n stones ($n \geq 2$) and split this pile into n separate piles of one stone each by successively splitting a pile of stones into two smaller piles. Each time you split a pile you multiply the number of stones in each of the two smaller piles you form, so that if these piles have p and q stones in them, respectively, you compute $p q$. Show that no matter how you split the piles (eventually into n piles of one stone each), the sum of the products computed at each step equals $\frac{n(n-1)}{2}$.
For example - say with start with 5 stones and split them as follows:
$(5) \rightarrow \underbrace{(3)(2)}_{=6} \rightarrow \underbrace{(2)(1)}_{=2} \underbrace{(1)(1)}_{=1} \rightarrow \underbrace{(1)(1)}_{=1}(1)(1)(1)$.
Then, we get, $6+2+1+1=10=\frac{5 x 4}{2} \quad \checkmark$.
Hint: If we have $\mathrm{n}+1$ stones, how can we separate them, and what happens then?
7. Let F_{k} denote the Fibonacci sequence. Show that for every $k \geq 3, F_{k} \geq 2 \cdot(3 / 2)^{k-3}$.
8. Show that every number $n \in \mathbb{N}$ can be written as $n=2^{k} m$ where k is a non-negative integer and m is odd.

Hint: What happens if $n+1$ is not prime in the induction step?
9. Prove that every natural number greater than 1 has a prime factor.

Before next week, watch videos 22 and 23 in https://personal.math.ubc.ca/~PLP/auxiliary.html.

