Worksheet for Week 7

1. Let $A=\{1,2\}$. Find $\mathcal{P}(A)$ and $\mathcal{P}(\mathcal{P}(A)-\{\emptyset\})$.
2. Show that if p and q are natural numbers, then $\{p n \mid n \in \mathbb{N}\} \cap\{q n \mid n \in \mathbb{N}\} \neq \emptyset$.

Hint: Think about a couple of concrete examples first.
3. (Old final question) Let $p_{1}, p_{2}, p_{3}, \ldots, p_{n}, \ldots$ be the set of all prime numbers listed in an increasing order (so that $p_{1}=2, p_{2}=3, p_{3}=5$, etc.).

For $k \in \mathbb{N}$ let

$$
A_{k}=\left\{a \in \mathbb{N} \mid a \geq 2 \text { and } p_{k} \text { does not divide a }\right\}
$$

and for $n \in \mathbb{N}$, define

$$
B_{n}=\bigcap_{k=1}^{n} A_{k}=A_{1} \cap A_{2} \cap A_{3} \cap \ldots \cap A_{n}
$$

(a) Find the smallest element of the set B_{4}.
(b) (Casual discussion) Ask whether for every $n \in \mathbb{N}$, the set B_{n} is infinite or not.
(c) Find the intersection of all A_{k} 's.

Hint: The last example from last lecture may be useful here.
4. Let $a \in \mathbb{R}$.
(a) On the $x y$-plane, draw the set $A_{a}=\left\{\left(x, x^{2}-a x\right), x \in \mathbb{R}\right\}$ when $a=0, a=1$ and $a=2$.
(b) Now define

$$
\bigcap_{a \in \mathbb{R}} A_{a}=\left\{(u, v) \mid \forall a \in \mathbb{R},(u, v) \in A_{a}\right\}
$$

Show that $\bigcap_{a \in \mathbb{R}} A_{a}=\{(0,0)\}$.
Hint: What does it mean for a point to be in the intersection?
5. Show that for every $k \in \mathbb{Z}, \exists x, y \in \mathbb{Z}$, such that $k=4 x+5 y$.

What does it say about the set $A=\{4 x+5 y \mid x, y \in \mathbb{Z}\}$: is it a subset of, superset of, or equal to \mathbb{Z} ?
Before next examples, watch video 24 in https://personal.math.ubc.ca/~PLP/auxiliary.html.
6. Let A, B and C be sets. For each of the following statements, either prove it is true or give a counterexample.
(a) $\mathcal{P}(A \cup B) \subseteq \mathcal{P}(A) \cup \mathcal{P}(B)$
(b) $\mathcal{P}(A \cup B) \supseteq \mathcal{P}(A) \cup \mathcal{P}(B)$

Hint: First try this with small sets.
7. (Old final question: this is a tricky one) Let T be the set of all natural numbers that can be written as some nonnegative integer number of 3's plus some nonnegative integer number of 5's. For example, $9=3+3+3$ and $10=5+5$ and $17=3+3+3+3+5$ are all in T, but 4 is not. Find $\mathbb{N}-T$ (with justification).
Hint: Try to figure out which numbers are in the set, and then try to generalize your answer.
8. Let S be a set and A_{α} 's be sets for all $\alpha \in S$. Then, we can define the sets

- $\bigcap_{\alpha \in S} A_{\alpha}=\left\{x \mid \forall \alpha \in S, x \in A_{\alpha}\right\}$
- $\bigcup_{\alpha \in S} A_{\alpha}=\left\{x \mid \exists \alpha \in S, x \in A_{\alpha}\right\}$

Use these definitions to find the sets
(a) $\bigcap_{x \in \mathbb{R}}\left(1-x^{2}, 2+x^{2}\right)$

Hint: $(=[1,2])$
(b) $\bigcup_{x \in(0,1 / 2)}\left[1+x^{2}, 2-x\right]$

Hint: $(=(1,2))$.
9. We consider subsets A, B and C of the universe U. Let \bar{A} denote the complement of A.
(a) Prove that $\bar{A} \subseteq B$ if and only if $A \cup B=U$.
(b) Prove that $\bar{A} \subseteq B$ implies $(C \backslash B) \cup A=A$

Hint: A little diagram may help you visualize.
Before next week, watch video 25 in https://personal.math.ubc.ca/~PLP/auxiliary.html.

