Worksheet for Week 8

- 1. Let A, B and C be sets. Then prove or disprove: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- 2. Let A, B and C be sets. Then prove or disprove: A (B C) = (A B) C. Hint: Venn diagrams will be useful here.
- 3. If A and B are sets, then prove that $(A \subseteq B) \implies (\mathcal{P}(A) \subseteq \mathcal{P}(B))$. Hint: Remember that subset relation is a conditional statement.
- 4. (Old final question) Let A, B, C be sets. Prove that $A \times C \subseteq B \times C$ if and only if $A \subseteq B$ or $C = \emptyset$. Hint: For one of the directions, recall $(P \implies (Q \lor R)) \equiv (P \implies ((\sim Q) \implies R))$.
- 5. If A and B are sets, then prove that $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.

Before the following examples, watch videos 26 and 27 in https://personal.math.ubc.ca/~PLP/auxiliary.html.

6. Let $A = \{1, 2, 3, 4, 5, 6\}$. Write out the relation R that expresses " \uparrow " (does not divide) on A as a set of ordered pairs.

Note: We need to make sure that we are not leaving any one of the ordered pairs out. If we do, it is not the same relation anymore.

- 7. (Old final) Determine which of the following relations, \mathbf{R} , are reflexive, symmetric and transitive on the given set A. (We call a relation that satisfies all 3 properties, an equivalence relation.) Prove your answers.
 - (a) $\mathbf{R} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = x^2\}$ on $A = \mathbb{R}$.
 - (b) $\mathbf{R} = \{(1,1), (2,2), (3,3), (1,2), (2,1), (1,3), (3,1)\}$ on $A = \{1,2,3\}$.
 - (c) $\mathbf{R} = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : 3 \text{ divides } a b\}$ on $A = \mathbb{Z}$.
- 8. Define a relation on \mathbb{Z} as aRb if $3 \mid (2a-5b)$. Is R reflexive, symmetric, transitive? Justify your answer.
- 9. Let \mathcal{R} and \mathcal{R}' be two relations on the same set A. Prove or disprove the following.
 - (a) If \mathcal{R} and \mathcal{R}' are transitive, then the relation $\widehat{\mathcal{R}}$ defined as $\widehat{\mathcal{R}} = \mathcal{R} \cup \mathcal{R}'$ is transitive.
 - (b) If \mathcal{R} and \mathcal{R}' are transitive, then the relation $\widehat{\mathcal{R}}$ defined as $\widehat{\mathcal{R}} = \mathcal{R} \cap \mathcal{R}'$ is transitive.

Before the following week, watch video 28 in https://personal.math.ubc.ca/~PLP/auxiliary.html.