Worksheet for Week 9

These questions are standard, but a little challenging and long, so they should be just fine for this week.

1. Let p be a prime number and let a, b be integers. Then prove that $p \mid a b \Longleftrightarrow(p \mid a)$ or $(p \mid b)$.

Hint: Bezout's lemma may be useful for one direction.
2. (old exam question) A relation R on \mathbb{Z} is defined by $a R b$ if $7 a^{2} \equiv 2 b^{2}(\bmod 5)$. Prove that R is an equivalence relation. Determine the distinct equivalence classes [0] and [1], simplify your answer as much as possible.
Hint: The previous example will be useful here.
3. (old exam question) Let R be a relation on \mathbb{R} defined as

$$
R=\left\{(x, y): \cos ^{2}(x)+\sin ^{2}(y)=1\right\} .
$$

Prove that R is an equivalence relation, and for $\theta \in \mathbb{R}$, write the equivalence class $[\theta]$.
Hint: For the last part of the question, you can try to visualize it on the unit circle.
4. Define a relation, S , on $\mathbb{Z} \times \mathbb{N}$ as

$$
(x, y) S(a, b) \Leftrightarrow x b=y a .
$$

Show that S is an equivalence relation. Moreover, find the equivalence class of $(1,3)$.
Hint: How can you rewrite the relation equality?
Before the following examples, watch videos 29 and 30 in https://personal.math.ubc.ca/~PLP/ auxiliary.html.
5. Suppose P is a partition of a set A. Define a relation R on A by declaring $x R y$ if and only if $x, y \in X$ for some $X \in P$. Prove R is an equivalence relation on A. Then prove that P is the set of equivalence classes of R.

Hint: It may be useful to draw couple disjoint sets with elements and help them visualize it that way if need be.
6. Given $n \in \mathbb{N}$, let $[a]_{n}$ denote the equivalence class of a under the relation "congruence modulo n " on the integers. We define the multiplicative inverse of $[a]_{n}$ to be the equivalence class $[b]_{n}$ such that $[a]_{n}[b]_{n}=[1]_{n}$, if such an equivalence class exists. (Multiplicative inverses are nice because they allow us to perform "dividing by $[a]_{n}$ " by multiplying by the multiplicative inverse of $\left.[a]_{n}\right)$.
(a) Write down the multiplication table for the equivalence classes of the relation "congruence modulo $5 "$. Show that every equivalence class $[k]_{5}$, where $k \not \equiv 0(\bmod 5)$, has a multiplicative inverse.

We see that multiplicative inverses of $[1]_{5},[2]_{5},[3]_{5},[4]_{5}$ are $[1]_{5},[3]_{5},[2]_{5},[4]_{5}$ respectively.
(b) Prove that if $n \in \mathbb{N}$ is prime, then every nonzero integer modulo n has a multiplicative inverse. Hint: Again, Bezout's lemma.
7. (If there is time) Suppose that $n \in \mathbb{N}$ and \mathbb{Z}_{n} is the set of equivalence class of congruent modulo n on \mathbb{Z}. In this question we will call an element $[u]_{n}$ invertible if it has a multiplicative inverse. Now, define a relation R on \mathbb{Z}_{n} by $x R y$ iff $x u=y$ for some invertible $[u]_{n} \in \mathbb{Z}_{n}$.
(a) Show that R is a equivalence relation.
(b) Compute the equivalence classes of this relation for $n=6$.

Hint: First find the invertible elements in \mathbb{Z}_{6}.
Before the following week, watch videos 31 and 32 in https://personal.math.ubc.ca/~PLP/auxiliary. html.

