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w O. Introduction 

P. Smith proved a long time ago that if a group acts freely on a sphere, then 
its abelian subgroups are cyclic. In this paper we will prove the natural general- 
ization of this result to products of spheres: 

Theorem 4.2. Let G = (Z/p) r, p odd, act freely on (S") k, then 

r< k. [] 

For  p = 2 we prove an analogous theorem, provided n 4: 1, 3, 7. 
Although this inequality was conjectured several years ago, the first real 

progress was made by G. Carlsson [5, 3]. He proved this result when the action 
is homologically trivial, using powerful homological tools which actually yield 
a lot more information than the inequality alone. Later, Browder [-1, 2] intro- 
duced the idea of using degree to analyze free group actions, and the homologi- 
cally trivial case follows as a corollary of his techniques. 

In this paper we analyze the problem by separating the homologically trivial 
part from the representation-theoretic difficulties, and dealing with each of them 
separately. 

We first prove a refinement of Carlsson's result 

Theorem 1.1. Let G=(Z/p)', p odd, act freely on an orientable Ztv)-homology 
manifold X with H* (X, Z~v)) ~ H* ((S") k, Zip)); then 

dim H,(X,  Fp)~ > r kH 

where H c G is the subgroup of elements in G acting trivially on H .  (X, Ztv)). []  

Then, using rational representation theory, we prove the following theorem 
about Zip) G-lattices: 
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Theorem 3.1. Let G =(Z/p)', p odd and M a finitely generated Z(p)G-lattice. Then 

/ 2 
dimFp M | Fp-- dimvp (M | Fp) G > ~ - 1 }  (r kz(~ M -- r kz(~ Ma). [] 

A combination of these two inequalities leads to the following theorem, 
which implies Theorem 4.2: 

Theorem 4.1. Let G=(Z/p) ~, p odd, act freely on an orientable Ztl,)-homology 
manifold X with H* (X, Zip))~-H* (Sn) k, Z(p)). Then 

Fp) a + (~_2) (d im Hn(X, Fp)-  dim H,(X,  Fp)a). [] r < dimv~ Hn(X, 

For p = 2 this method fails, but instead we work over F2, and assume that 
X is a finitistic space homotopy equivalent to (S") k. For n =~ 1, 3, 7, homotopy 
theoretic considerations force the homology representations over F 2 to be partic- 
ularly simple, and we can recover an analogue of 4.2. Hence the only remaining 
situations are p = 2  with n =  1, 3, 7. 

The results here are stated for free actions, but they can be generalized 
to arbitrary ones; in Sect. 6 we describe how this can be done. 

Acknowledgements .  The first author  is grateful to G.J. Janusz and R.J. Milgram for helpful conversa- 
tions. 

w 1. The homologically trivial part 

In this section we will apply the usual cohomological methods to study free 
(Z/p) r actions on (Sn) k. 

Let G be a finite group and X a finitistic space on which G acts. The Borel 
construction on X is defined as 

X x EG = X x EG/G 
G 

where EG is the universal contractible free G-space and G acts diagonally on 
X x EG. We have a fibration 

i 
X ~ X x E G  

G 

l 
BG 

and the induced spectral sequence in cohomology has E2 term 

E~,q=H'(G, Hq(X, R))=e.HP+q(X x EG, R) 
G 

where G acts possibly non-trivially on H* (X, R). 
The following theorem is a consequence of an analysis of this spectral 

sequence in our situation. 
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Theorem 1.1. Let G=(Z/p) ' ,  p odd, act freely on an orientable Z~g)-homology 
manifold X with H*(X ,  Z~p))~-H*((S") k, Z~p)) and denote by H the subgroup of  
elements in G which act homologically trivially on H ,  (X, Fp). Then 

r k H < dimF p H,(  X,  Fp) a. 

Proof Let R =Ztp) and consider the spectral sequence in cohomology with R- 
coefficients associated to 

X i ~X x E H  
H 

BH. 

Look at the differential 

d,+~: H " ( X , R ) ~ H " + I ( H , R ) .  

We can choose an R-basis vl . . . .  , VR of H"(X, R) such that 

{d. +1 (Vl), ... , d. +1 (v~)} 

is an Fp basis for the vector space im d.+ ~ = H  "+ 1 (H, R) (H is elementary abelian) 
and 

V s +  I,  " ' " ,  Vkeker tin+ 1. 

Then clearly pvl . . . .  , pv~, v~+ l . . . .  , Vk are all in ker d,+ 1. 
O,n O,n Now d. + ~ is the only differential on Er , any r. On E.+~, ker d. + 1 consists 

of permanent cocycles. This means that 

ker d. + 1 = i m  i* 

i*: H* (X • EH, R) ~ H* (X, R). 
n 

From this it follows that 

p~v~ ... Vk~im i*. 

We also have a commutat ive diagram, with vertical arrow a homotopy  equiva- 
lence 

X - - - k - .  X x E H 

X / H  

The map  n is a covering of homology manifolds of degree IHI, hence in 
the top cohomology group im i*=(IHl#x), where #x is a generator. However, 
this class can be chosen so that 

/A x ~-~ V 1 . . .  U k . 
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We conclude that IHI Ip ', so that 
rkH<=s. 

As G is abelian, its action commutes with that of H on X, and so it acts 
on the whole spectral sequence, trivially on the horizontal edge. Hence d,+ 1 
is G-equivariant, and we have a short exact sequence of G-modules 

0 ~ i m  i* ~H"(X,  R)--*im d,+ 1 ~ 0 .  

The module on the right is trivial, and of dimension at least rkH. From this 
it follows that 

r kH < dimFp H ~ (X, Fp)a (coinvariants). 

Dualizing we obtain 
rkH<dimF~H,(X, Fp) a. [] 

Remarks. This proof works just as well for homology near-manifolds M~)(S") ~ 
(see [1]). Using Carlsson's original proof of the homologically trivial case ([3]), 
it can also be extended to finitistic spaces X ~ (S") k. Another advantage of the 
proof we use is that it can easily by adapted to yield a generalization of 1.1 
to the non-free case (this will be discussed in Sect. 6). 

In the situation of Theorem 1.1, it is plain that H,(X, Fp) is a faithful G/H- 
module, and so is H,(X, Zt~j). The next step in our proof of the main theorem 
will be to find a suitable lower bound on 

dimFp Hn(X, Fp)- dimFp Hn(X, Fp) G. 

For this we require some facts about rational representations of (Z/p) r. 

w 2. Rational representations of (Z/p)" 

In this section we will describe the complete collection of irreducible rational 
representations of (Z/p) r in a particularly simple way. 

We recall a fundamental theorem about QG-modules (see [7]): 

Theorem 2.1. Let G be a finite group. Then QG is a direct sum QG= (~ Si 
i=1 

of irreducible QG-modules. All irreducibles appear in this decomposition and any 
other QG-module can be expressed uniquely as a direct sum of copies of these 
simple summands. [] 

Now let G = (Z/p)r: we construct a collection of irreducibles as follows. Let 
H c G  be a subgroup of index p and take the reduced regular representation 
of G/H: Q[G/H]/(N~/H), where N~m is the norm. Then G acts on this module 
through G --* G/H. As a G-module we will denote it by M(H). 

Lemma 2.2. Each M(H) is a simple QG-module and M(H)~M(H')  if and ,~l)' 
i fH=H' .  

Proof Clearly Q [G/H]/(N~ m) is a simple G/H-module, hence M(H) is a simple 
QG-module. 
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For the second part, look at the rational character which M(H) affords 

pn(g) = { p l  I if geH 
if gr 

Clearly/~n =/~u, if and only if H = H'. []  

Proposition 2.3. The {M (H)[ H c G, [G:H]  = p} and the trivial one-dimensional 
representation Q are a complete collection of irreducible QG-modules. 

Proof. 

~-~__ 1) tP-- 1)=P" 

p ' - -  1 
as there are ~ subgroups of index p in G. The result follows from Theo- 

rem 2.1. []  

Therefore we have shown that any finitely generated QG-module M can 
be expressed uniquely as 

M ~ Q  m i �9 
\ i =  1 / 

w 3. Integral representations of (Z/p)" 

As before, let R = Zip). Then, if G is a finite group, an RG-lattice is a finitely 
generated R-torsion-free RG-module. We use the results in w 2 to prove 

Theorem 3.1. Let G = (Z/p) r, p odd and M an RG-lattice. Then 

dim~p M | Fp-dimF~ ( M | Fp)~ >=( Pp-~21) (r kR M - r  k ~ MG). 

Proof. For an RG-lattice M denote 

Vp (M) = dimFp M | 179 -- dimrp (M | Fp) a. 

For short exact sequences of RG-lattices 0 --* M' --* M ~ M" ~ 0 it is easy to 
verify that 

Vp (M) >__ 7p (M') + 7p (M"). (3.2) 

Notice that we have a short exact sequence of RG-lattices: 

O~ M6 ~ M--* M/Ma ~O. 

Froru this we have ),p(M)>=V~,(M/MG), hence it suffices to prove the theorem 
for M/M ~ ((M/Ma)a= 0). 

Denote ~ = M/M ~. We will use induction on the simple summands in Q M 
~Q,,~. 

First assume 
Q~r---M(H) for some H ~ G .  
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Then, as a G/H-module 

Qff'l ~- Q [G/H]/(N~m ). 

From the Diederichsen-Reiner Theorem on Z/p-lattices (see [6]) we deduce 
that M is isomorphic to R [~], where ~ is a primitive p-th root  of unity and 
a generator of G/H acts through 4. Then, reducing mod p, we necessarily have 

I~I | F~ "~- Fp [ G / H]/( N~/H). 

From this it follows that 
/ n__9~  

~,p(]~l)=l-~l) rkg 2~1 = p - 2  

and the result holds in this case. 
Now suppose the result holds for modules which over Q are a sum of k -  1 

simple summands, and assume 

Q~I ~ - @ M(Hi)~-M(H1)O M(I-I~) . 
i = l  

This rational splitting gives us a projection 

Q ~  ~ ,M(/_/1). 

Let N =  ~(M'); then we have a short exact sequence of RG-lattices 

0---* N' --. M --* N --* 0 
where 

By 3.2 

k 

Q N'~- 0 M(Hi), Q N ~  M(H,). 
i=2 

yp(!~l) > ~p(N') + 7p(N) ~ k ( p -  2). 

The second inequality follows from our induction hypothesis, and the proof 
is complete. [ ]  

Corollary 3.3. Under the condition of Theorem 3.1, if M is a faithful representation, 
then 

dim,p M | Fp-- dim,p (M | Fp) a > (p -- 2) r k (G). 

Proof. Let Q M ~ Q r ( ~  M(Hi , then in particular it is a faithful QG-module. 

Therefore we must have 

~ //i  = 0 in G = (Z/p)'. 
i = 1  
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The Hi are hyperplanes in G, so that there must be at least r distinct ones 
among them, i.e. s>r. Applying the theorem, 

~,(M)>(pp~21)(s(p--1))>=r(p--2). [] 

The inequality can also be rearranged to show 

Corollary 3.4. Under the conditions of Theorem 3.l, 

dimFpHl(G,M)| _ [] 

Recently G. Janusz 1-9] has proved a beautiful generalization of 3.2 for all 
abelian p-groups. 

w 4. The main theorem 

We will use the preceding results to prove 

Theorem 4.1. Let (Z/p)', p odd, act freely on a Ztp)-hornology manifold X with 
H* (X, Ztp)) ~- H* ((S") k, Z~p)). Then 

r < dim H,(X, Fp)~ ~ (dim H. (X, Fp)-dim H. (X, Fp)~ 

Proof. By Theorem 1.1, if H c G  is the subgroup of elements of G which act 
trivially on H .  (X, Fp), then 

rkH <dim~ H.(X, F,) ~. 

On the other hand, by Corollary 3.2, as G/H acts faithfully on H.(X, Fp), we 
have 

kG/H < ~ (dim H.(X, Fp)-  dim H.(X, Fp)a). r 

Combining these two inequalities completes the proof. [] 

As a corollary, we obtain the generalization of Smith's theorem: 

Theorem 4.2. Let G = (Z/p)', p odd, act freely on (Sn) k; then 

r<k. [] 

This proof will work as long as 1.1 holds, hence it can be extended to 
the other cases mentioned. 

For an arbitrary finite, connected free (Zip)r-complex X we can use the 
same methods to find an interesting "global" bound on r, provided X has 
torsion-free Ztp)-homology. Denote by N(X) the number of such non-zero 
reduced homology groups of X and let J c Fp G be the augmentation ideal. 
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Proposition 4.3. (Compare [-4].) I f  G = (Z/p) r, p odd, and X is a finite, free, con- 
nected G -  CWcomplex with Z~p) torsion free homology, then 

r< N ( X ) + ( p - ~ ) ( d i m F  JH*(X,  Fp)). 

Proof. Once again if H ~ G acts homologically trivially on X, then 

r k H < S ( X ) .  

This is a theorem due to Browder [2]. Now G/H acts faithfully on H,(X,  Fr) , 
hence 

dim H .  (X, Fp)-  dim H .  (X, Fp)~__> ( p -  2) r k GIn. 

By duality, the term on the left is just dim JH* (X, Fp) and the two inequalities 
imply the result. [] 

in the next section we deal with the case p = 2. 

w 5. The case p = 2 

In this case the rational representation theory is of no use. We shall work 
only over F2. We recover 1.1 for p = 2  by using Caflsson's proof when the 
action is homologically trivial [5]. This proof Uses exclusively arguments over 
F2, and works for finitistic spaces X ~ (Sn) k with a free action of G = (Z/2)', 

Now the problem is to find a suitable lower bound for v2(H,(X, Zt2)))(nota- 
tion as before). The following lemma was first proved by Schultz 1,10] using 
different methods: 

Lemma 5.1. Let G be a finite group acting on X ~ (Sn) k for n 4= 1, 3, 7. Then 

i=1 

a permutation module. 

Proof. Let geG, then up to homotopy we can express its action g .  on Hn(X, 172) 
in terms of the basis given by S " ~  (S") k. In this basis, no two elements on 
the same row in the matrix for g .  can be non-zero, otherwise we would have 
a map Snx S n ~ S  n of bidegree (odd, odd) and this is impossible for n , 1 .  3, 
7. 

We conclude that in this basis g ,  is represented by a permutation matrix. 
This holds for all geG with the same basis, implying the result. [] 

Lemma 5.2. Let G = (Z/2)' and M a faithful F2 G permutation module. Then 

dimF2 M--  dimv2 M e_-> r. 

Proof. As easy inductive argument. []  

We are ready to prove an approximation to Theorem 4.2. 
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Theorem 5.3. Let G=(Z/2) r act freely on a finitistic space X ~(S~) k, n:t: 1, 3, 7. 
Then 

r<=k. 

Proof. Let H o G  be the subgroup of elements acting trivially on Hn(X, F2). 
As we said before 

rkH < dim H~(X, F2) ~. 

Now Hn(X, F2) is a faithful F2 [G/H]-permutation module, so by Lemma 5.2, 

rkG/H <_ dim H~(X, F2) - dim H~(X, F2) a. 

As before, we combine these inequalities to complete the proof. [] 

The remaining cases p = 2 with n = 1, 3, 7 are rather different, as the homology 
representations are quite arbitrary. On the other hand a richer geometric struc- 
ture is available, and perhaps this can be exploited to settle them. 

w General (Z/p)'-actions 

For this situation we recall a theorem due to Browder [1] : 

Theorem 6.1. Let G =(Z/p) r act on an orientable Z~p~-homology near-manifold M ~, 
preserving orientation. Then if i: M ~ M • EG is the fiber inclusion 

I H~(M, Z)/i* H~(M x EG, Z)t Is divisible by lG:G,I, 

where G, is an isotropy subgroup of maximal rank in G and n is the top dimen- 
sion. [] 

This leads to an immediate extension of 1.1 and hence 4.1, which we now 
state in full generality: 

Theorem 6.2. Let G =(Z/p)', p odd act on an orientable Ztp)-homology near mani- 
fold X with H*(X, Z~p~) -~ H*((S~) k, Z~p)) and let H o c  G be an isotropy subgroup 
of maximal rank acting homologically trivially on X. Then 

1 
r k G ~ d i m  Hn(X, F p ) ~ + p ~  2 (dim Hn(X, Fp)-dim Hn(X, Fp)~)+rkHo . [] 

For p = 2  Carlsson's proof for the homologically trivial case [5] can be 
generalized to show that the corank of an isotropy subgroup of maximal rank 
is bounded by the number of spheres. As before, this can be used to prove 

Theorem 6.3. I f  G = (Z/2)' acts on a finitistic space X ~ (Sn) k and H o is an isotropy 
SUbgroup of maximal rank acting homologically trivially on X, then 

rkG<dimHn(X,  Fz)+rkHo. [] 
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w 7. Questions 

To conclude we mention three related questions. 

7.1 With the hypothesis of 4.1, does the stronger inequality 

rkG <dimFp Hn(X, Fp) ~ 

hold (same for p = 2)? 

7.2 If (Z/p)" acts freely on Sn'xSn2x ...S nk, is r<k? (Heller I-8] has proved 
this for k = 2.) 

7.3 (G. Carlsson) If G=(Z/p) r and C, is a finite, free, connected FpG-chain 
complex, then is 

dim H~(C.)> 2r? 
i = 0  

(Carlsson [6] has proved this for rkG < 3, p = 2.) 

References 

1. Browder, W.: Actions of elementary abelian groups (To appear in Topology) 
2. Browder, W.: Cohomology and group actions. Invent. Math. 71, 599-607 (1983) 
3. Carlsson, G.: On the rank of abelian groups acting freely on (Sn) k. Invent. Math. 69, 393404 

(1982) 
4. Carlsson, G.: On the homology of finite free (Z/2)~-Complexes. Invent. Math. 74, 139-147 0983) 
5. Carlsson, G.: On the Non-existence of Free Actions of Elementary Abelian Groups on Products 

of Spheres. Am. J. Math. 102, 1147-1157 (1980) 
6. Carlsson, G.: (Z/2) 3 Actions on Finite Complexes. Algebraic Topology and Algebraic K-Theory. 

Ann. Math. Stud. 113 (1987) 
7. Curtis, G., Reiner, I.: Methods of Representation Theory. New York: J. Wiley & Sons, 1981 
8. HeUer, A.: A note on Spaces with Operators. Ill. J. Math. 3, 98-100 (1959) 
9. Janusz, G.J.: An Inequality in Integral Representation Theory (To appear) 

10. Schultz, R.: On the Inertia Group of a Product of Spheres. Trans. Am. Math. Soc. 156, 137-153 
(1971) 

Oblatum 9-VIII-1987 


