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§ 0. Introduction

P. Smith proved a long time ago that if a group acts freely on a sphere, then
its abelian subgroups are cyclic. In this paper we will prove the natural general-
ization of this result to products of spheres:

Theorem 4.2. Let G=(Z/pY, p odd, act freely on (S*)¥, then
r<k. O

For p=2 we prove an analogous theorem, provided n=1, 3, 7.

Although this inequality was conjectured several years ago, the first real
progress was made by G. Carlsson {5, 3]. He proved this result when the action
is homologically trivial, using powerful homological tools which actually yield
a lot more information than the inequality alone. Later, Browder [1, 2] intro-
duced the idea of using degree to analyze free group actions, and the homologi-
cally trivial case follows as a corollary of his techniques.

In this paper we analyze the problem by separating the homologically trivial
part from the representation-theoretic difficulties, and dealing with each of them
separately.

We first prove a refinement of Carlsson’s result

Theorem 1.1. Let G=(Z/py, p odd, act freely on an orientable Z,-homology
manifold X with H*(X, Z,) = H*((S"*, Z(,)); then

dim H,(X,F,)¢zrkH

where H <G is the subgroup of elements in G acting trivially on H (X, Z,).

Then, using rational representation theory, we prove the following theorem
about Z,, G-lattices:
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Theorem 3.1. Let G=(Z/pY, p odd and M a finitely generated L, G-lattice. Then

dimg, M ® F, — dimg (M ® F,)° 2 (p

p_l)(rkz(P)M‘—rkz(p)MG). D

A combination of these two inequalities leads to the following theorem,
which implies Theorem 4.2:

Theorem 4.1. Let G=(Z/p), p odd, act freely on an orientable Z ,-homology
manifold X with H*(X, Z,) = H*(S", Z,,,). Then

r<dimg, H,(X,F,)%+ (p—}E) (dim H,(X, F,)—dim H,(X,F,)%). O

For p=2 this method fails, but instead we work over F,, and assume that
X is a finitistic space homotopy equivalent to (S")*. For n#1, 3, 7, homotopy
theoretic considerations force the homology representations over F, to be partic-
ularly simple, and we can recover an analogue of 4.2. Hence the only remaining
situations are p=2 withn=1, 3, 7.

The results here are stated for free actions, but they can be generalized
to arbitrary ones; in Sect. 6 we describe how this can be done.

Acknowledgements. The first author is grateful to G.J. Janusz and R.J. Milgram for helpful conversa-

tions.

§ 1. The homologically trivial part

In this section we will apply the usual cohomological methods to study free
(Z,/p) actions on (S")*.

Let G be a finite group and X a finitistic space on which G acts. The Borel
construction on X is defined as

X>G<EG=XxEG/G

where EG is the universal contractible free G-space and G acts diagonally on
X x EG. We have a fibration

X— S XxEG
G

BG
and the induced spectral sequence in cohomology has E, term
E&=H?(G, HY(X, R))=H "X X EG,R)

where G acts possibly non-trivially on H*(X, R).
The following theorem is a consequence of an analysis of this spectral
sequence in our situation.
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Theorem 1.1. Let G=(Z/p), p odd, act freely on an orientable Z,-homology
manifold X with H*(X, Z, )~ H*((S", Z,) and denote by H the subgroup of
elements in G which act homologically trivially on H, (X, F,). Then

rkH <dimg H,(X, F,)°.
Proof. Let R=1Z,, and consider the spectral sequence in cohomology with R-

cocfficients associated to

X—" X xEH
H

BH

Look at the differential
dyy,: H(X,R)~>H""'(H, R).
We can choose an R-basis vy, ..., v, of H*(X, R) such that

{dn+ l(vl)’ e dn+ l(vs)}

is an F, basis for the vector space im d,,. ; < H"*'(H, R) (H is elementary abelian)

and
Ussqs --0s UEKELd,y o g

Then clearly pv,y, ..., pt, gy 15 ..., 0 are all in ker d, , ;.
Now d,,, , is the only differential on E>", any r. On E%,, kerd,,, , consists
of permanent cocycles. This means that
kel’ d,,+ 1 =1m i*
i*: H*(X xEH,R)- H*(X, R).
H
From this it follows that
p'uy ... v Eim i*,
We also have a commutative diagram, with vertical arrow a homotopy equiva-

lence

X— S XxEH

X/H

The map = is a covering of homology manifolds of degree |H|, hence in
the top cohomology group im i* =(H|puy), where uy is a generator. However,
this class can be chosen so that

Py =101 ... 0.
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We conclude that |H||p® so that
rkH<s.

As G is abelian, its action commutes with that of H on X, and so it acts
on the whole spectral sequence, trivially on the horizontal edge. Hence d, .,
is G-equivariant, and we have a short exact sequence of G-modules

0—-imi* > H*(X,R)—imd,,;—0.

The module on the right is trivial, and of dimension at least rkH. From this
it follows that
rkH <dimy H*(X,F,); (coinvariants).

Dualizing we obtain
rkH<dimg H,(X,F)%. 0O

Remarks. This proof works just as well for homology near-manifolds M, (")
(see [1]). Using Carlsson’s original proof of the homologically trivial case ([3]),
it can also be extended to finitistic spaces X =(S")*. Another advantage of the
proof we use is that it can easily by adapted to yield a generalization of 1.1
to the non-free case (this will be discussed in Sect. 6).

In the situation of Theorem 1.1, it is plain that H,(X, F,) is a faithful G/H-
module, and so is H,(X, Z,). The next step in our proof of the main theorem
will be to find a suitable lower bound on

dimg, H,(X, F,)—dimg, H,(X, F,)°.

For this we require some facts about rational representations of (Z/p).

§ 2. Rational representations of (Z/p)”

In this section we will describe the complete collection of irreducible rational
representations of (Z/p)" in a particularly simple way.
We recall a fundamental theorem about QG-modules (see [7]):

Theorem 2.1. Let G be a finite group. Then QG is a direct sum QG=@DS:
i=1

of irreducible QG-modules. All irreducibles appear in this decomposition and any

other QG-module can be expressed uniquely as a direct sum of copies of these

simple summands. []

Now let G=(Z/p)’: we construct a collection of irreducibles as follows. Let
H<G be a subgroup of index p and take the reduced regular representation
of G/H: Q[G/H]/(Ng), where Ngy is the norm. Then G acts on this module
through G — G/H. As a G-module we will denote it by M (H).

Lemma 2.2. Each M(H) is a simple QG-module and M (H)=~M (H') if and paly
if H=H'.

Proof. Clearly Q[G/H]/(Ng,5) is a simple G/H-module, hence M (H) is a simple
QG-module.
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For the second part, look at the rational character which M (H) affords
_fp—1 ifgeH
“”(g)_{—1 ifg¢H.
Clearly ug=up-ifand onlyif H=H'. [

Proposition 2.3. The {M(H)|H<G, [G:H]=p} and the trivial one-dimensional
representation Q are a complete collection of irreducible QG-modules.

Proof.
dimg (Q@(@M(H))):H(Bp'—}}) (p—1)=p'

1 subgroups of index p in G. The result follows from Theo-

as there are

rem2.1. [

Therefore we have shown that any finitely generated QG-module M can
be expressed uniquely as

MgQ'”(-D(('—B M(Hi)).

i=1

§3. Integral representations of (Z/p)"

As before, let R=Z,. Then, if G is a finite group, an RG-lattice is a finitely

generated R-torsion-free RG-module. We use the results in § 2 to prove

Theorem 3.1. Let G=(Z/pY, p odd and M an RG-lattice. Then

p—2
1

dim,.-p M@Fp“dlmFP(M@Fp)Gg( )(rkRM—‘rkR MG).

Proof. For an RG-lattice M denote
¥p(M)=dimg, M®F,—dimg (MF,)C.

For short exact sequences of RG-lattices 0—»M — M —M” -0 it is easy to
verify that
V(M) Z 7, (M) +7,(M"). (3.2)

Notice that we have a short exact sequence of RG-lattices:
0->M® > M- M/M%-0.

From this we have 7,(M)27,(M/M€), hence it suffices to prove the theorem
for M/MS (M /M)5 =0).
Denote M = M/M®. We will use induction on the simple summands in QM
Q@M.
First assume _
QM=M(H) forsomeHZ<G.
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Then, as a G/H-module
QM =Q[G/H]/(Ng/n)-

From the Diederichsen-Reiner Theorem on Z/p-lattices (see [6]) we deduce
that M is isomorphic to R[&], where & is a primitive p-th root of unity and
a generator of G/H acts through &. Then, reducing mod p, we necessarily have

MQ®F,~ r [G/H]/(NG/H)'

From this it follows that

_ —} _
y,,(M)=(“’ )rkRM=p—2
p—1

and the result holds in this case.
Now suppose the result holds for modules which over Q are a sum of k—1
simple summands, and assume

k k
Q= @ M= M(H)S( D M(H)).

i=2
This rational splitting gives us a projection

QM——M((H,).
Let N =n(M); then we have a short exact sequence of RG-lattices

0N ->M->N-0
where

k
QNP MH), QN=MH,).
i=2
By3.2
7o (M)Z7,(N) +7,(N)2k(p—2).

The second inequality follows from our induction hypothesis, and the proof
is complete. 3

Corollary 3.3. Under the condition of Theorem 3.1, if M is a faithful representation,

then
dimFp M®F,— dime M ®FP)G =(p—2)rk(G).

Proof. Let QM EQT(-D(@ M(H i)), then in particular it is a faithful QG-module.
i=1

Therefore we must have ,
(\ H;=0 in G=(Z/p).
i=1
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The H; are hyperplanes in G, so that there must be at least r distinct ones
among them, i.e. s=r. Applying the theorem,

2N str-zrp-2. O

vp(M)g(

The inequality can also be rearranged to show

Corollary 3.4. Under the conditions of Theorem 3.1,

1
p—1

dimg, H'(G, M)®F, < (rkxM —rkg MS). [

Recently G. Janusz [9] has proved a beautiful generalization of 3.2 for all
abelian p-groups.

§4. The main theorem

We will use the preceding results to prove

Theorem 4.1. Let (Z/pY, p odd, act freely on a Z,-homology manifold X with
H*(X, Z,) = H*(S", Z,). Then

r<dim H,(X,F,)® + —1—2 (dim H,(X, F,)—dim H,(X, F,)°).
P

Proof. By Theorem 1.1, if H< G is the subgroup of elements of G which act
trivially on H, (X, F,), then
rkH Sdimg H,(X, F,)°

On the other hand, by Corollary 3.2, as G/H acts faithfully on H,(X, F,), we
have
1

p—2

rkG/H <—— (dim H,(X, F,)—dim H,(X, F,)%).

Combining these two inequalities completes the proof. []
As a corollary, we obtain the generalization of Smith’s theorem:

Theorem 4.2. Let G =(Z/p), p odd, act freely on (S™; then
r<k. O

This proof will work as long as 1.1 holds, hence it can be extended to
the other cases mentioned.

For an arbitrary finite, connected free (Z/p)-complex X we can use the
same methods to find an interesting “global” bound on r, provided X has
torsion-free Z,,,-homology. Denote by N(X) the number of such non-zero
reduced homology groups of X and let J = F,G be the augmentation ideal.
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Proposition 4.3. (Compare [4].) If G=(Z/p), p odd, and X is a finite, free, con-
nected G— CW complex with Z,, torsion free homology, then

r<N(X)+ (p—ii) (dimg, JH*(X, F,).

Proof. Once again if H =G acts homologically trivially on X, then
rkH ZN(X).

This is a theorem due to Browder [2]. Now G/H acts faithfully on H (X, F),
hence

dim H,(X,F,)—dim H,(X,F,)° 2 (p—2) rkG/H.

By duality, the term on the left is just dim JH* (X, F,) and the two inequalities
imply the result. []

In the next section we deal with the case p=2.

§ 5. The case p=2

In this case the rational representation theory is of no use. We shall work
only over F,. We recover 1.1 for p=2 by using Catlsson’s proof when the
action is homologically trivial [5]. This proof uses exclusively arguments over
F,, and works for finitistic spaces X = (8" with a free action of G=(Z/2)".

Now the problem is to find a suitable lower bound for y,(H,(X, Z)) (nota-
tion as before). The following lemma was first proved by Schultz [10] using
different methods:

Lemma 5.1. Let G be a finite group acting on X =(S"Y for n+1, 3, 7. Then

H,(X,E)=@F,[G/H],
i=1

a permutation module.
Proof. Let geG, then up to homotopy we can express its action g, on H,(X, F)
in terms of the basis given by $"<(S™F. In this basis, no two elements on
the same row in the matrix for g, can be non-zero, otherwise we would have
a map S"x §"—S" of bidegree (odd, odd) and this is impossible for n#1. 3
7. .

We conclude that in this basis g, is represented by a permutation mattix
This holds for all geG with the same basis, implying the result. [

Lemma 5.2. Let G=(Z/2) and M a faithful F, G permutation module. Then
dimg, M —dimg, M9 2.
Proof. As easy inductive argument. []

We are ready to prove an approximation to Theorem 4.2.
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Theorem 5.3, Let G=(Z/2)" act freely on a finitistic space X =(S™, n#1, 3, 7.

Then r<k

Proof. Let Hc G be the subgroup of elements acting trivially on H,(X, F).

As we said before .
rkH <dim H,(X, F,)°.

Now H, (X, F,) is a faithful F, [G/H]-permutation module, so by Lemma 5.2,
rkG/H £dim H (X, F,)—dim H, (X, E,)°.
As before, we combine these inequalities to complete the proof. [J

The remaining cases p=2 with n=1, 3, 7 are rather different, as the homology
representations are quite arbitrary. On the other hand a richer geometric struc-
ture is available, and perhaps this can be exploited to settle them.

§6. General (Z/p) -actions

For this situation we recall a theorem due to Browder [1]:

Theorem 6.1. Let G=(Z/p)" act on an orientable Z,-homology near-manifold M,
preserving orientation. Then if i: M > M x EG is the fiber inclusion

[H"(M, Z)/i* H"(M >(§ EG,Z} Isdivisible by |G:G,|,

where G, is an isotropy subgroup of maximal rank in G and n is the top dimen-
sion. ]

This leads to an immediate extension of 1.1 and hence 4.1, which we now
state in full generality:

Theorem 6.2. Let G =(Z/pY, p odd act on an orientable Z,-homology near mani-
Jold X with H*(X, Z,)=H*((S"}, Z,) and let Hy= G be an isotropy subgroup
of maximal rank acting homologically trivially on X. Then

rkG <dim H, (X, FP)G+;—}—5(dim H,(X,F,)—dim H,(X,F,)%)+rkH,. (]

For p=2 Carlsson’s proof for the homologically trivial case [5] can be
generalized to show that the corank of an isotropy subgroup of maximal rank
s bounded by the number of spheres. As before, this can be used to prove

Theorem 6.3, If G=(Z/2) acts on a finitistic space X =(S"* and H is an isotropy
Subgroup of maximal rank acting homologically trivially on X, then

rkGLdim H (X, F,)+rkHy. [
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§ 7. Questions

To conclude we mention three related questions.

7.1 With the hypothesis of 4.1, does the stronger inequality
rkG<dimg, H,(X,F,)¢

hold (same for p=2)?

7.2 If (Z/p) acts freely on S"t x S§"2x ...8™, is r<k? (Heller [8] has proved
this for k=2.)

7.3 (G. Carlsson) If G=(Z/p)" and C, is a finite, free, connected F,G-chain

complex, then is
Y dim H(C,)=2"?

i=0

(Carlsson [6] has proved this for rkG<3, p=2)
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