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Abstract. We define and study the generalized Tate homology of a compact Lie 
group G with coefficients in a spectrum upon which G acts. 

§1. INTRODUCTION 

Let G be a finite group and X a G-CW complex. The cellular chain complex 
S.(X) is a graded Z[G]-module, and the hyperhomology of G with coefficients 
in S.(X) (denoted H;;(X)) is known as the equivariant homology of X. The 
groups Hf (X) can be identified with the ordinary homology groups of the Borel 
construction EG x G X or equivalently with the homotopy groups of the spectrum 
H A (EG xa X)+, where His the Eilenberg-MacLane spectrum {1<(Z, n)}. 

Define the equivariant Tate homology of X, denoted fi? (X), to be the Tate 
hyperhomology of G with coefficients in S.(X). (Up to regrading, the Tate 
hyperhomology of G with coefficients in a Z[G] chain complex S. is the Tate 
hypercohomology [Sw] of the cochain complex S* obtained by reversing the 
indices of S. in sign. The regrading is such that the Tate hyperhomology of G 
with coefficients in a single module M concentrated in degree 0 agrees in strictly 
positive dimensions with the ordinary group homology of G with coefficients in 
M.) One goal of this paper is to prove that the equivariant Tate homolog)' of X 
can also be expressed in a natural way as the homotopy of a certain spectrum. 
In fact, we will make a much more general construction. Let G be a compact Lie 
group. A spectrum E with an action of G is by definition a spectrum {En} in 
the usual sense { cf. [A]) together with an action of G on each space with respect 
to which the suspension maps are equivariant. A weak equivalence between two 
such objects is an equivariant map which is a weak equivalence on the underlying 
spectra. 
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2 A. ADEM, R. L. COHEN, W. G. DWYER 

THEOREM 1.1. Let G be a compact Lie group and E a spectrum with an action 
of G. Then there exists a spectrum fiG(E) with the following properties: 

(1) E ~--+ iJG (E) is a functor from the category of spectra with an action of 
G to the category of spectra. This functor carries weak equivalences to 
weak equivalences. 

(2) If G is a finite group, X is a G-GW complex, and E is the spectrum H A 
(X+) with the induced action of G, then there is a natural isomorphism 

(3) If G is a finite group, X is a G-CW complex, and E is the suspension 
spectrum of X+ with the induced action ofG, then fiG(E) is equivalent 
to the fiber of the Kahn-Priddy transfer map [KP} 

( 4) If G is the circle group S1 , X is a G-CW complex, and E is the spectrum 
H A X+ with the induced action of G, then 7r.(fiG(E)) is the periodic 
cyclic homology as defined by Jones {J J and Good willie {Go2} of the the 
chain complex S.(X). 

REMARK: In (3) above, Q(Y) = limO"E"(Y). For any G-space Z, zhG denotes 
----+ 

the homotopy fixed point set MapG(EG, Z). 

Part (3) of this theorem reflects the fact that the spectra fiG (E) are in fact 
constructed in terms of homotopy fibers of certain transfer maps. To be more 
precise, assume that G is a compact Lie group with Lie algebra g. Given a 
G-space X, one can use the adjoint representation of G on g to construct an 
induced vector bundle 

ad: EG Xa (g x X)-+ EG Xa X. 

Let (EG XG X)ad denote the Thorn space of this vector bundle. The Becker-
Schultz transfer (or umkehr) map [BS] can be viewed as a map of spectra 

which when G is finite agrees with the Kahn-Priddy transfer mentioned in 1.1(3). 
(The definition of the above homotopy fixed point spectrum will be given in §2.) 
Now let E be any spectrum with an action of G. Using the Becker-Schultz 
construction we will produce an E-transfer map 

which agrees with the Becker-Schultz transfer when E is E00 X. The spectrum 
fiG (E) is defined to be the stable fiber of T£. The generalized Tate homology 
groups of G with coefficients in E are defined by 
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GENERALIZED TATE HOMOLOGY 3 

REMARK: Greenlees was the first to prove that Tate cohomology is a repre-
sentable functor, and he has studied its representing spectrum in some detail. 
We urge the reader to consult his paper [Gr]. We would like to thank him for 
making his work available to us and for pointing out common results. Our work 
complements his in some ways; one of our intentions is to show that defining 
Tate homology in terms of a classical stable homotopy transfer map naturally 
leads to a more general notion that allows for compact Lie groups and arbitrary 
spectra. 

Organization of the paper. Section 2 contains the definition of generalized 
Tate homology and the proof of 1.1(3). Section 3 is concerned with the proof 
of 1.1(2). Finally, Section 4 treats in detail one example of generalized Tate 
homology, describes the proof of 1.1( 4), and concludes with some remarks about 
generalized cyclic homology. 

§2. GENERALIZED TATE HOMOLOGY 

In this section we will give the construction of the Tate homology spectrum 
:fiG(E) and prove 1.1(3). Our basic idea is to use the transfer construction of 
Becker and Schultz (BS] and keep track of equivariance. 

First we will establish some notation. Let G be a compact Lie group. If W 
is a finite dimensional representation of G we will denote by sw the one point 
compactification of the underlying vector space of W. The space sw is a sphere, 
and the action of G on W induces an action of G on sw which fixes the (base-) 
point 'at infinity. Given a based G-space Y let EwY be the smash product 
sw /\ Y and awy the space Map.(Sw, Y) of basepoint preserving maps from 
sw to Y. It is clear that EWY has a diagonal G-action and that nwy has a 
G-action given by conjugation of maps. (The fixed point set (nwy)G of this 
latter action is the space of G-equivariant maps sw --+ Y.) We define Qa(Y) 
by the formula 

Qa(Y) = lirnOwEw(Y) 
--+ 
w 

where the limit is taken over all finite dimensional representations W of G. As 
usual the space QY is obtained by restricting the indexing set in the above direct 
limit to be the set of trivial finite-dimensional representations of G. 

If ( : E--+ B is a vector bundle over B, let B' denote the Thorn space of(. 
Now suppose that G is a compact Lie group and that X is a finite, free, G-CW 

complex. Let B = X/G be the orbit space, and p: X--+ B the natural projection 
map. Choose an equivariant embedding e : X <---> V of X into a finite dimensional 
representation space V of G. This induces an embedding p x e : X --+ B x V 
with normal bundle, say, v. (Note that the notion of normal bundle makes sense 
here. Over any point b of B the map p X e induces an equivariant embedding 
eb : p- 1 (b) <---> V. Since p- 1 (b) is a free, transitive G-space, it is clear that eb has 
a well-defined normal bundle Vb. As b varies the bundles Vb can be assembled 
into a global normal bundle v for X in B x V.) 

Denote the projection map B x V --+ B by 1r. There is evidently a Thom-
Pontryagin collapse map Ev B+ = B'lr --+ X 11 but ( cf. [BS]) unless G is finite 
this is not quite the transfer map we want. 
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4 A. ADEM, R. L. COHEN, W. G. DWYER 

Let g be the Lie algebra of G and ad the vector bundle over B associated to 
the adjoint action of G on g. We will denote the total space X x a g of ad by E. 
Let tr' : Ex V -+ E-+ B be the composite of ad with the product projection. By 
using the zero-section of ad it is possible to lift the map p : X -+ B to a map p' : 
X -+ E. This induces an embedding p' x e : X -+ Ex V with normal bundle, say, 
v'. It is immediate that the Thorn space B"' is Ev Bad, and it is well-known (see 
(BS]) that the corresponding Thorn space xv' is equivariantly homeomorphic to 
Ev (X+)· The umkehr map we are seeking is the Thom-Pontryagin collapse map 
Ev Bad -+ Ev (X+)· One observes that this collapse map is equivariant, The 
adjoint map Bad -+ nvEv(X+) consequently factors through a map Bad -+ 
(OvEv (X+ ))G which stabilizes to 

The map t'X may be composed with the inclusion of the fixed point set in the 
homotopy fixed point set to give a map 

The natural map Q(X+)-+ Qa(X+) is a weak G-equivalence, in other words, 
it is an equivariant map that is a (nonequivariant) homotopy equivalence. Such 
weak G-equivalences become equivalences when the homotopy fixed point functor 
is applied. 
DEFINITION 2.1: If X is a finite, free G--CW complex, the transfer map tx 
(X/G)ad-+ (Q(X+))hG is the composite 

where the first map is t~ and the second map is the inverse of the above natural 
homotopy equivalence of homotopy fixed point sets. 

We now need to extend this definition. Suppose first that X is a free G-
CW complex which is not necessarily finite. In this case one restricts at first 
to the finite G-subcomplexes I< of X, constructs maps tK as above, and then 
checks that these transfers fit together and extend to a transfer map tx. This 
procedure is standard and we leave its verification to the reader (see (Cl] or 
(LMS] for details). If X is a G-space which is not a G-CW complex, we will 
tacitly assume that X has been replaced by a G--CW approximation (LMS], 
eg. by the equivariant version of the realization of its singular complex. If X 
is a G-space which is not free, we can make the above construction with the 
equivalent free G-space EG x X. The upshot of this is to obtain for any G-space 
X a transfer map 

Suppose now that E is an infinite loop space with an action of G, that is, 
an infinite loop space (M2] together with an action of G that respects all of 
the infinite loop structure. In this case the infinite loop structure gives a map 
Q(E+) --+ E which is G-equivariant and induces a map (Q(E+))hG --+ EhG; 
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GENERALIZED TATE HOMOLOGY 5 

moreover, if e0 is the basepoint of E (necessarily fixed by the action of G), the 
inclusion 5° -+ E+ determined by e0 induces maps Q(S0 ) -+ Q(E+) -+ E and 
(Q(S0 ))ha-+ (Q(E+))ha-+ Eha which are null homotopic. It follows that the 
map tE induces a map 

where ( EG + /\a E) ad denotes the quotient of ( EG x a E) ad by ( EG X { e0} )ad = 
BGad. If E ={En} is an omega spectrum with an action of G then the source 
spaces of the maps TEn fit together to form a spectrum which we will denote 
(EG+ /\a E)ad. Similarly, the target spaces fit together to form a spectrum 
whose structure maps are induced in the obvious way by the structure maps 
of the spectrum E. We call this second spectrum the homotopy fixed point 
spectrum of the action of G on E and denote it by Eha. Notice furthermore 
that the maps TEn respect the structure maps of these two spectra and hence 
induce a map of spectra 

If E is simply a spectrum with an action of G (not necessarily an omega spec-
trum) we define Eha to be (E')ha, where E' is the associated omega spectrum, 
and obtain as before a transfer map TE· 
DEFINITION 2.2: If G is a compact Lie group and E a spectrum with an action 
of G, we define 

(1) the generalized Tate homology spectrum Ha(E) to be the (stable) fiber 
of the map of spectra given by the transfer TE : (EG+ /\a E)ad -+ Eha, 
and 

(2) the generalized Tate homology groups H~(E) to be the homotopy groups 
of Ha(E). 

We will now prove 1.1(3). To do this it is convenient to use configuration space 
approximations to loop spaces, as described in [M2]. To be more precise, if V 
is a finite dimensional vector space let 

This configuration spaces has a free symmetric group ('En) action given by per-
muting coordinates. Given a based space Z, let C(V, Z) be the complex 

C(V, Z) = u F(V, n) X!;n zn I"' 
n>O 

where the components in this union are patched together by a basepoint relation 
as described in [M2]. For Z path connected, there is a well known weak ho-
motopy equivalence [M2] [H] a : C(V, Z) -+ nv'Ev (Z). If V is a G-orthogonal 
representation space and Z is a G-space with a basepoint that is fixed under the 
action, then C(V, Z) has an induced G-action and it is easily observed that the 
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6 A. ADEM, R. L. COHEN, W. G. DWYER 

map a is an equivariant. Hence if Z is connected, a is a weak G-equivalence and 
so induces an equivalence on homotopy fixed points. 
PROOF OF 1.1(3): Assume that X is finite and that G acts freely on X. (If 
the action on X is not free, replace X as above by EG x X. If X is not finite, 
restrict to finite subcomplexes and make a direct limit argument. We leave it to 
the reader to fill in these details (CI].) Choose as above an equivariant embedding 
e : X <-t V of X into a representation space V. Let B be the quotient space 
XjG. 

Suppose the order of the finite group G is n. Consider the Kahn-Priddy 
transfer map [KP] 

TKP: B-+ F(V,n) Xl;,. xn <-t C(V,X+) 

defined by rK p(b) = ( e(x 1), · · · , e(xn)) x (x1 , · · · , xn), where the x/s run through 
the orbit in X represented by b E B. It is clear that the image of TK p lies 
in the fixed points of C(V, X+). Moreover, a check of the definition of the 
map a: C(V,X+)-+ nvEv(X+) as given in (M2] shows that the composition 

1"KP a 
B--+ C(V,X+)G-+ (OvEv (X+))G-+ Qa(X+) is the map t'Jc defined above. 
(Note that since G is a finite group Bad= B+.) The desired result is immediate. 

§3. RELATIONSHIP TO CLASSICAL TATE HOMOLOGY 

In this section we will prove 1.1(2). It is convenient to work simplicially (Ml], 
and so we will assume that X is a simplicial set with an action of the finite 
group G and that EG is a contractible simplicial set on which G acts freely 
(Ml, p. 83]. The first step is to give a homotopy-theoretic construction of the 
positive-dimensional part of the classical Tate homology of (the realization of) 
X. Consider the simplicial free abelian group Z 0 X which in each dimension n 
is the free abelian group on the set Xn of n-simplices of X. As in [Ml, p. 98], 
the homotopy groups of the realization IZ®XI are the integral homology groups 
of lXI. 

One can associate to an n--simplex u of EG x a X the sum of the n--simplices 
in EG x X which are in the free G-orbit u represents. This association extends 
additively to a simplicial map tr: Z® (EG X a X)-+ Z®(EG x X) whose image 
clearly lies in the G-fixed-points of Z® (EG x X). Let "f denote the composition 
oftr with the obvious map (Z®(EG x X))G-+ (Z®X)G and let TzG(X) denote 
the homotopy fiber of the map IZ®(EGxaX)I-+ IZ®XIhG given by composing 
1"11 with the inclusion of the fixed point set into the homotopy fixed point set. 

PROPOSITION 3.1. For any simplicial set X with an action of the finite group 
G there are natural isomorphisms 

for all i ~ 0. 

This requires a lemma. Let N. be the normalization functor which assigns 
to each simplicial abelian group its normalized chain complex and N• the dual 
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GENERALIZED TATE HOMOLOGY 7 

functor which assigns to each cosimplicial abelian group its normalized cochain 
complex [BKl, §2]. Suppose that A is a cosimplicial simplicial abelian group 
and that B = N.N• A is the double chain complex obtained by normalizing A 
in both directions [BKl, 2.4]. Define a chain complex t(A) by letting t(A)n 
be the product ili-i=n Bf and using the standard formula [BKl, §3] for the 
differential. The chain complex t(A) in general has entries in both positive and 
negative degrees; we will let t+(A) stand for the sub chain complex which is 
zero in negative dimensions, agrees with t(A) in dimensions greater than 0, and 
contains in dimension 0 the cycles of t(A)0 • 

LEMMA 3.2. For any cosimplicial simplicial abelian group A there is a natural 
chain map 

17(A) : N. Tot( A) __. t+(A) 

which induces an isomorphism on homology. 

REMARK: Here Tot( A) is defined as in [BK2, X, §3]; it is dear that applying the 
Tot functor to a cosimplicial simplicial abelian group yields a simplicial abelian 
group. 
PROOF OF 3.2: This result is in some sense implicit in [BKl] and [BK2, X, 
§6] and is in any case very similar to the Eilenberg-Zilber theorem [Ml, p. 129]. 
We will only sketch the proof. The first step is to construct natural maps 77n : 
Tot(A)n --> t(A)n, (n 2: 0). Since Tot( -)n is represented by the cosimplical 
simplicial abelian group Z 0 (~X ~[n]) [BK2, §3], such a map 77n is determined 
universally by an element en E t(Z 0 (~ X ~[n])n. By definition, such an en is 
specified by a collection en(k) (k 2: 0), where en(k) lies in N.Z0(~[k] x ~[n])k+n 
and e0 (k) maps trivially to N.z 0 (~[k- 1] x ~[n]) under the maps induced 
by the k standard collapses si : ~[k] __. ~[k - 1]. Choose en(I<) to be the 
fundamental cycle of ~[n] x ~[k] provided by the Eilenberg-MacLane shuffi.e 
formula [Ml, p. 133]. A short calculation then shows that the maps 77n vanish 
on degenerate elements of Tot(A) and combine to produce the desired chain 
map 77(A) : N. Tot(A) --> t+(A). The fact that 77(A) induces an isomorphism 
on homology follows from the methods of [BKl]; both Tot(A) and t+(A) can 
be expressed as inverse limits in a natural way, and 7J(A) induces equivalences 
between the constituents of the corresponding towers of chain complexes. 
PROOF OF 3.1: Let A denote the cosimplicial simplicial abelian group with 
A~= Homsets(EGp, Z 0 (EG x X)q) and B the cosimplicial simplicial abelian 
group defined in a corresponding way with EG replaced by ~[0]. Note that 
all of the cosimplicial operators of B are isomorphisms, so that N. Tot( B) ~ 
N.(z 0 (EG X X))~ t+(B) ~ t(B). The unique map EG __. ~[0] induces a G-
map h : B -->A of cosimplicial simplicial objects. By [BK2, X, 3.3(i)] the fixed 
point set Tot(A)G is isomorphic to the simplicial function complex of G-maps 
EG--> EG X X and thus ITot(A)GI is weakly equivalent to IZ 0 (EG x X)lhG. 
Let F1 be the homotopy fiber (in the category of simplicial abelian groups) of the 
composite Z 0 (EG XG X).!.:.. (Z 0 (EG X X))G TO:.S.h) Tot(A)G. It follows that 
Tt(X) is naturally homotopy equivalent to IF1I· Let F2 be the homotopy fiber 
(in the category of chain complexes) of the composite N. ( Z 0 ( EG x G X)) N ~r) 
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8 A. ADEM, R. L. COHEN, W. G. DWYER 

G t(h) G . . . 
N.(Z 0 (EG x X)) -+ t(A) , It follows essentially by mspect10n that the 
homology groups of F2 are the classical Tate hyperhomology groups of G with 
coefficients in N.(Z 0 X) ""S.(IXI). The proposition is now a consequence of 
the existence of a commutative diagram 

N.(h) 
N.((Z 0 (EG x X))G) ---+ N. Tot(AG) 

q(BG) 1 1 
t(h) 

---+ 

in which the right-hand vertical arrow (which is the composite of 77(AG) and the 
inclusion t+(AG) -+ t(AG)) is a homology equivalence in non-negagtive dimen-
siOns. 

Let SP00 denote the infinite symmetric product construction, either in the 
category of topological spaces or in the category of simplicial sets. Let X+ be 
the space obtained by adjoining a disjoint G-fixed basepoint to X. By [Sp] there 
is a weak G-equivalence between ISP00 (X+)I and SP00 1X+I 

Define a simplicial transfer tr' : SP00 (EG xa X+) -+ SP00 (EG x X+) as 
follows: for each n-simplex in EG xa X+ take the G-orbit in SP00 (EG x X+) 
which it represents. The map tr' is a simplicial analogue of the transfer defined 
by L. Smith [Sm]. There is an evident natural G-equivariant group completion 
map gp: SP00 (X+)-+ Z 0 X which sends the added basepoint"+" to 0 (this 
map is an isomorphism on homotopy in strictly positive dimensions). 

The following diagram then commutes : 

tr 1 

SP00 (EG xa X+) ---+ SP00 (EG X X+) 

gp 1 lgp 

Z0(EGxaX) --+ 
tr 

Z0(EG X X). 

Both transfers fall into the fixed-point sets. Let Tip(X) denote the homotopy 
fiber of the map SP00 1EG Xa X+l-+ SP00 IEG x XlhG -+ SP00 IXIhG corre-
sponding to tr'. By using the homotopy invariance property of homotopy fixed 
point sets [BK2, XI, 5.6] we obtain by 3.1 the following proposition. 

PROPOSITION 3.3. For any simplicial set X with an action of the finite group 
G there are natural isomorphisms 

for all i > 0. 

PROOF OF 1.1(2): Assume as in the proof of 1.1(3) (§2) that X is a finite G-
CW complex on which G acts freely and that X <---+ V is an embedding of X 
into an orthogonal representation space of G. Let B be the quotient XjG. Take 
as a model of the Eilenberg-MacLane space K(Z, m) the space SP00 (Sm). The 
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GENERALIZED TATE HOMOLOGY 9 

Kahn-Priddy transfer TKP combines with the diagonal map of SP00 (Sm) to give 
a transfer map 

whose image lies in the fixed point set. It follows from the proof of 1.1(3) and 
a little manipulation that passing to the limit in m and V with r(m, V) and 
extracting homotopy fixed points in the range will give the transfer map of §2 
whose fiber is :HG(H A X+)· (A similar result holds with H replaced by any 
other spectrum on which G acts trivially.) For any based space Z there is a 
natural map h : C(V, Z) -+ SP00 (Z) obtained by adding coordinates. One can 
check that the following diagram commutes on the point set level: 

SP00 (Sm) A B+ 
r(m,V) 

C(V,SP00 (sm) A X+) 

61 lh 

SP00 (Sm A B+) 
tr 1(m) 

SP00 (Sm A X+) ---+ 

where tr' ( m) is constructed from the map tr' above in the obvious way and the 
map labeled 8 is the standard pairing. Now loop the diagram down m times and 
pass to the limit in m and V. The vertical arrows become weak equivalences 
and, as noted above, the upper horizontal map (after passing to homotopy fixed 
points in the range) determines the zero space in the n-spectrum corresponding 
to HG(H A X+)· It follows that this zero space can be computed as the homotopy 
fiber of the map 

lim tr'(m) 
~nmSP 00 (Sm AB+) _-+ __ _. ~(nmspoo(sm AX+))hG. 
m m 

However, the standard pairing 6 produces by adjointness a commutative diagram 

~nmSP 00 (Sm A B+) 
m 

tr' 
---+ 

I~tr'(m) 

lim(nmspoo(sm A X+)) 
--+ 
m 

in which the vertical arrows induce isomorphisms on homotopy in positive dimen-
sions. Proposition 3.4 then implies that Hy(H A X+) is isomorphic to ilf(X) 
for i > 0. The general theorem is proven by applying this result to an arbitrarily 
high suspension of X; it is easy to see that suspending X has essentially the effect 
of shifting both the classical Tate homology and the generalized Tate homology 
up by one in dimension. 
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§4. Two EXAMPLES 

In this section we analyze two examples of generalized Tate homology. In 
the first example the group G is a finite p-group and the spectrum involved is 
the suspension spectrum of a finite G-cW complex. In this case we will use 
Carlsson's theorem (the Segal conjecture [Ca]) to give a complete p-prirnary 
calculation of the generalized Tate homology. In the second example the group 
is the circle group 5 1 and the spectrum involved isH t\X+ for X a finite G-cW 
complex. In this case we relate the corresponding generalized Tate homology 
theory to the periodic cyclic homology theory of Goodwillie [Go2] and Jones 
[J]. 

We begin with the assumption that G is a finite p-group, where p is a prime 
number. Let X be a finite G-cW complex. We recall torn Dieck's theorem [tD] 
describing the fixed points Qa(X+ )G. 

THEOREM 4.1 [tD]. Suppose that G is a finite p-group and that X is a finite 
G-GW complex. For H a subgroup of G, let N(H) < G be the normalizer 
subgroup of H, and let W(H) = N(H)/H be tl1e corresponding Weyl group. 
Then there is a homotopy equivalence of infinite loop spaces 

¢:IT Q((EW(H) Xw(H) xH)+)-+ Qa(X+)G 
H 

where the product is taken over all conjugacy classes of subgroups H < G. 
Moreover the restriction of¢ to the factor corresponding to the trivial subgroup 
is given by the Kahn-Priddy transfer map 

We now recall Carlsson's theorem [Ca]. 

THEOREM 4.2 [Ca]. For G a finite p- group and X a finite G-CW complex, 
the natural map 

is a weak equivalence when completed at the prime p. 

Consider the Tate homology spectrum fiG (E00 X+) as defined in §2. By def-
inition, its corresponding zero space noofiG (E00 X+) is the fiber of the map of 
infinite loop spaces r : Q(EG xa X+) -+ Qa(X+)hG ~ Q(X+)hG. Thus by 
combining theorems 4.1 and 4.2 we obtain the following calculation of the p-adic 
completion of the Tate homology spectrum: 

THEOREM 4.3. For G a finite p-group and X a finite G-CW complex there is 
an isomorphism 

H~(E 00 X+) =p EB 7T!(EW(H) Xw(H) xH). 
H;t{e} 
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Here ~P denotes isomorphism after p-completion, and the sum is taken over all 
conjugacy classes of nontrivial subgroups H <G. 

REMARK: Notice that this theorem says that the Tate homology of :E00 X+ de-
pends at least p-adically only on the singular subspace of X. In particular, if X 
is a free G-space, the p-adic Tate homology of its suspension spectrum is zero. 

We now turn our attention to the case in which G = 8 1 , the circle group, 
and to the proof of 1.1( 4). Our machinery actually leads to the definition of 
generalized cyclic homology theories, and we will make some observations about 
this. 

Assume X is a finite G-cW complex. As observed in (DHK] and (J], the 
chain complex S,.(X) of X has a natural cyclic structure. We will write HC .. (X), 
HC;(X), and HC,.(X) respectively to denote the cyclic, negative cyclic, and 
periodic cyclic homology groups of the cyclic module S .. (X). We refer the reader 
to (Go2] and (J] for a description of these theories. It has been proved by 
Goodwillie (Gol] that the groups HC,.(X) are the homotopy groups of the 
spectrum H.t\(ES1 x5 1 X+)· We will now describe the other two types of cyclic 
homology in terms of the homotopy groups of spectra. 

LEMMA 4.4. There is a natural isomorphism 

HC:;(X) ~ 1r,.(H .t\ X+)h 51 • 

PROOF: This lemma is proved in two steps. First, by (DHK] (Gol] we may 
assume without loss of generality that X is the realization of a cyclic set [(. 
By applying the free abelian group functor Z ® - from the category of cyclic 
sets to the category of cyclic modules ( cf. §3) and then taking realization, we 
end up with an 51-space IZ ® Kl which is homotopy equivalent to the zero 
space 0 00 (H .t\ X+). Moreover we can make this equivalence a weak equivariant 
equivalence, and in particular produce an equivalence of infinite loop spaces 

q,: noo(H .t\ X+)hSl -+ IZ ® I<lhsl. 

The construction of q, is carried out using the techniques in the proof of 1.1(2). 
The second step in the proof is then to show that 1r .. 1 Z ® J( lhS 1 is isomorphic in 

positive dimensions to HC;(X) or equivalently to the negative cyclic homology 
of the cyclic module Z®K. This is done by recalling the second quadrant double 
chain complex for computing HC; constructed in [J]. One compares this double 
complex with the one obtained by first giving ES1 a cyclic decomposition and 
then using this to construct a cocyclic cyclic abelian group Hoiilcyc( ES1, Z ® K) 
whose total space is IZ ® J( lh 51 • Here "HOIIlcyc" denotes morphisms preserving 
the cyclic structure. An argument analogous to the one which was used to 
prove 1.1(2) proves that in positive total dimensions the above double complex 
computes 

1r.(Tot Homcyc(ES1 , Z ®I<)~ 1r,.(IZ ® Klh51 ) ~ 1r,.(H .t\ X+). 

As in the proof of 1.1(2), the restriction to positive dimensions can be removed 
by working with arbitrarily high suspensions of X. This completes the proof of 
the lemma. 
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REMARK: A special case of this lemma, namely the case in which X is weakly 
equivalent to the free loop space of a finite complex, was proved by Cohen and 
Jones in [CJ]. 
PROOF OF 1.1(4): The complex used to compute HC; is a subcomplex of the 
one used to compute HC •. One therefore has a long exact sequence (see [Go2] 
or [J]) 

As was discussed in [J], the connecting homomorphism 6 is induced on the 
chain level by the 5 1-transfer map. Translating that discussion to the language 
we are using here gives that the connecting map 6 is given by the composition 

6: HCq-1(X) ~ 7rq(H /1. L:(E51 Xsr X+))= 7rq(E5~ 1\sr (H /1. X+)td 

-+ 7rq((H /1. X+)h 5 ') ~ HC';(X). 
T' 

Here T is the transfer map defined in §2 for the Lie group 5 1. Note that (-)ad 
is just suspension because 5 1 is abelian. By the definition of the Tate homology 
spectrum, this immediately gives the desired result. 

Given the above it makes sense to define generalized cyclic homology groups 
as follows. Let E be a spectrum representing a generalized homology theory E •. 
Let X be a space with an 5 1-action. Define the E. generalized cyclic homology 
groups of X by the formulas 

and 

By [Gol), lemma 3.4 and theorem 1.1(3) these definitions agree with the 
definitions of the usual cyclic homology theories when E = H. Moreover the 
homotopy exact sequence for the transfer map gives an exact sequence 

analogous to the standard one above. However, the generalized "periodic cyclic 
homology" EC.(X) need no longer be periodic- periodicity fails in general, for 
instance, if E is the sphere spectrum. 

We end by remarking that the case in which E is the sphere spectrum S has 
proved very important in the study of Waldhausen's I<-theory [CCGH], [CJ], 
[B]. In particular the negative cyclic stable homotopy of the free loop space 
SC; (AX+) is the target of the Chern character map defined in [ CJ] and of the 
cyclic trace map defined in [B]. 
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