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1. A BRIEF HISTORY AND MOTIVATION

A simple consequence of the Brouwer fixed point theorem is that any cyclic group
acting on a closed disk IDn must have a fixed point. The classical work of P.A. Smith
[18] shows that if P is a finite p-group, then any action of P on ~n must have a fixed
point. From this there arises a very evident question: is there a group of compose
order which can act on some ~n without any fixed points? This was settled in the
affirmative by Floyd and Richardson in 1959 (see [7]), when they constructed fixed
point free actions of the alternating group A5 on disks.

These examples stood out as special exceptions for several years - indeed no
other such actions were known to exist until Oliver (see [13]) obtained a complete
characterization of those finite groups which can act on disks without stationary
points. To explain it we first need to introduce some group-theoretic concepts.

DEFINITION 1.1. - For p and q primes, let ~p be the class of finite groups G with
normal subgroups P a H a G, such that P is of p-power order, G/H is of q-power
order, and H/P is cyclic; and let Gp = ~qGqp, G = ~pGp.
THEOREM 1.2. - A finite group G has a fixed point free action on a disk if and only
if G / 9. In particular, any non-solvable group has a fixed point free action on a disk,
and an abelian group has such an action if and only if it has three or more non-cyclic
Sylow subgroups.

The smallest group with a fixed point free action on a disk is in fact the alternating
group A5; the smallest abelian group with such an action is C30 x C3o. Oliver also

proved that a group G will have a fixed point free action on a finite Zp-acyclic(l)

~~ Recall that a complex X is said to be Zp -acyclic if its reduced mod p homology is identically zero;
if its reduced integral homology vanishes it is said to be acyclic.
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complex if and only if G ~ Note that a group G will act without fixed points on a
contractible complex if and only if it acts without fixed points on an acyclic complex.

Taking into account Oliver’s result, an obvious problem is that of constructing fixed
point free actions on contractible or acyclic complexes of small dimension. A well-
known theorem by J.-P. Serre states that any finite group acting on a tree must have a
fixed point (see [17]). However, the situation for contractible 2-dimensional complexes
is much more complicated - in fact it is an open question whether or not it is possible
for a finite group to act on such a complex without fixed points. We will restrict our
attention from now on to the case of acyclic 2-dimensional complexes.

Our starting point is the classical example of an A5-action on an acyclic 2-dimensio-
nal complex without fixed points, which we now briefly recall. In fact it is an essential
ingredient in the construction due to Floyd and Richardson which we discussed above.
This example is constructed by considering the left A5 action on the Poincare sphere
~3 = SO(3)/ A5 ; as the action has a single fixed point (corresponding to the fact that
A5 is self-normalizing in SO(3)) we may remove an open 3-disk U around it to obtain
an acyclic compact 3-manifold ~3 - U with a fixed point free action of A5. This in
turn can be collapsed to a 2-dimensional subcomplex X ~ E3 - U upon which A5 still
acts without fixed points. Equivalently we could identify E3 with the space obtained
by identifying opposite faces of the solid dodecahedron in an appropriate way(2) and
consider the A5 action induced by the usual action on the dodecahedron. The fixed
point is the center of D and by collapsing to its boundary we obtain an explicit 2-
dimensional complex X = with a fixed point free action of A5 which has 6
pentagonal 2-cells, 10 edges and 5 vertices. Note that if we take the join A = A5 *X
with the induced diagonal action of A5, then we obtain a simply connected and acyclic
complex, hence a contractible complex with a fixed point free action. From this we can
obtain a fixed point free A5 action on a disk via regular neighborhoods (as explained
in [4], p.57). This is the basic step in the construction of the Floyd-Richardson
examples.

Now an obvious question arises from all of this: can we characterize those finite
groups which can act without fixed points on acyclic 2-dimensional complexes? In-

deed, are there even other examples of such actions? Remarkably it turns out that
these actions are only possible for a small class of simple groups, and their precise
determination and description will require using the classification of finite simple
groups.

(2)To be precise: identify opposite faces of the dodecahedron by the map which pushes each face
through the dodecahedron and twists it by 27T/10 about the axis of the push in the direction of a
right hand screw (see [12]).



2. STATEMENT OF RESULTS

In this note we will report on recent work of Oliver and Segev (see [15]) where they
provide a complete description of the finite groups which can act on a 2-dimensional

acyclic complex without fixed points. Their work builds on previous contributions by
Oliver [13], [14], Segev [16] and Aschbacher-Segev [2]. To state their main result we
need to introduce a useful technical condition for G-CW complexes. From now on we
will use the term G-complex to refer to a G-CW-complex, however these results also
hold for simplicial complexes with an admissible G-action(3).

DEFINITION 2.1. - A G-complex X is said to be essential if there is no normal

subgroup 1 ~ N a G with the property that for each H C G, the inclusion X H N  X H
induces an isomorphism on integral homology.

If there were such a normal subgroup N, then the G-action on X is ’essentially’ the
same as the G-action on X N, which factors through a G/N-action. For 2-dimensional
complexes we have:

THEOREM 2.2. - Let G be any finite group and let X be any 2-dimensional acyclic
G-complex. Let N denote the subgroup generated by all normal subgroups N’ a G such
that X N’ =1= 0. Then X N is acyclic, X is essential if and only if N =1, and if N ~ 1
then the action of G/N on X N is essential.

Based on this we restrict our attention to essential complexes, and we can now
state the main result in [15] :

THEOREM 2.3. - Given a finite group G, there is an essential fixed point free
2-dimensional acyclic G-complex if and only if G is isomorphic to one of the simple
groups for l~ > 2, PSL2 (q) for q - ~3 (mod 8) and q > 5 or for odd
k  3. Furthermore the isotropy subgroups of any such G-complex are all solvable.

Among the groups listed above, only the Suzuki groups Sz(q) are not commonly
known; we will provide a precise definition for them as subgroups of GL4(Fq) in § 5.
Note that the theorem is stated for arbitrary acyclic 2-dimensional complexes; there
is no need to require that the complexes be finite.

Our main goal will be to explain the proof of this result. This naturally breaks up
into a number of different steps. We begin in § 3 by explaining how the theorem can
be reduced to simple groups, based mostly on a theorem due to Segev [16]. Next in
§ 4 we describe techniques for constructing the desired actions, using methods derived
from Oliver’s original work on group actions on acyclic complexes as well as a more
detailed analysis of the associated subgroup lattices. This is then applied in § 5 to

(3) A simplicial complex X with a G action is called admissible if the action permutes the simplices
linearly and sends a simplex to itself only via the identity.



provide explicit descriptions of fixed point free actions on an acyclic 2-complex for
the simple groups listed in the main theorem. In §6 we sketch conditions which
imply the non-existence of fixed point free actions on acyclic 2-complexes for most
simple groups; this part requires detailed information about the intricate subgroup
structure for the finite simple groups. Finally in § 7 we use the classification of finite
simple groups and the previous results to outline the proof of the main theorem, which
has been previously reduced to verification for simple groups. We also make a few
concluding remarks.

Remark 2.4. - The background required to understand these results and their proofs
includes: (1) very basic equivariant algebraic topology; (2) familiarity with subgroup
complexes and related constructions; and (3) a very detailed knowledge of the sub-
group structure of the finite simple groups. As many of the arguments in the proofs
depend on the particular properties of these groups, our synopsis cannot hope to
contain complete details. However the original paper by Oliver and Segev [15] is writ-
ten in a clear style accessible to a broad range of mathematicians and hence those
interested in a deeper understanding of the results presented here should consult it

directly.

3. REDUCTION TO SIMPLE GROUPS

The goal of this section will be to explain how we can restrict our attention to
finite simple groups. This is based on the following key result due to Segev [16] :

THEOREM 3.1. - Let X be any 2-dimensional acyclic G-complex. Then the sub-

complex of fixed points X G is either acyclic or empty. If G is solvable then X G is

acyclic.

Proof. - Although Segev’s original proof uses the Odd Order Theorem, it can

be proved more directly. One can show that if X is an acyclic G-complex, then
= H2(XC,Z) = 0. Hence we are reduced to establishing that there is

only one connected component (provided XC is non-empty). For solvable groups this
can be proved directly using induction and Smith Theory. Otherwise we consider a
minimal group G for which a counterexample exists. If XC has k components then
in fact it can be shown that X looks roughly like the join of an acyclic fixed point
free G-complex Y with a set of k points. However as X is 2-dimensional, Y would
have to be 1-dimensional, in other words a tree, and this cannot hold. 0

Remark 3. 2. - The reader should keep in mind that Theorem 3.1 is a basic tool in
many of our subsequent arguments and it will be used explicitly and implicitly on
several occasions.



COROLLARY 3.3. -Let X be any 2-dimensional acyclic G-complex. Assume that
A, B C X are G-invariant acyclic subcomplexes such that X G C A U B; then

Proof. - Assume that A n B = 0 and let Z denote the G-complex obtained by
identifying A and B each to a point. Then Z is acyclic since A and B both are,
and ZG consists of two points, thus contradicting Theorem 3.1. D

As an immediate consequence of Corollary 3.3 we obtain

LEMMA 3.4. - Let X be a 2-dimensional acyclic G-complex. Then if H, K C G are
such that H C NG (K) and X H, X K are both nou-empty, then ~. Moreover,
if H C G is such that X H = ~, then 0.

Proof. - Since H normalizes K, both XH and X~ are H-invariant acyclic subcom-

plexes of X. Hence we conclude from Corollary 3.3 that ~ ~ X H n X K = X H K.
For the second part, it suffices to prove it when H is minimal among subgroups
without fixed points. Fix a pair M, M’ C H of distinct maximal subgroups (note
that by Theorem 3.1, H is non-solvable). Then X M and XM’ are non-empty,
but X M ~ XM’ = XM,M’~ = XH = 0. Hence X M and XM’ are disjoint CG (H)-
invariant acyclic subcomplexes of X, meaning (by Corollary 3.3) that their union
cannot contain whence it must be non-empty. 0

We can now prove one of the main reduction results, which allows us to restrict
our attention to essential complexes.

THEOREM 3.5. - Let G be any finite group, and let X be any 2-dimensional acyclic
G-complex. Let N be the subgroup generated by all normal subgroups N’ a G such
that X N’ =1= 0. Then X N is acyclic; X is essential if and only if N =1 and if N ~ 1
then the action of G/N on X N is essential.

Proof - If X Nl ~ ~ and X N2 ~ ~ for Ni , N2  G, then X(Nl,N2) 7~ 0 by Lemma
3.4. So we infer that X N is non-empty, hence acyclic (by Theorem 3.1). Note that
the action of any non-trivial normal subgroup of G/N on X N has empty fixed point
set, hence the action of G/N on X N is always essential. Finally, assume that ~V ~ 1;
by Theorem 3.1 we have that for all H C G, X H and X NH are acyclic or empty; and
X NH ~ ~ if X~ ~ 0, by Lemma 3.4. Hence the inclusion X H is always an
equivalence of integral homology, and hence X is not essential. D

This result will allow us to focus our attention on actions of simple groups.

THEOREM 3.6. - If G is a non-trivial finite group for which there exists an essential
2-dimensional acyclic G-complex X, then G is almost simple. In fact there is a normal
simple subgroup L a G such that X L = ~ and such that CG (L) =1.



Proof. - We know from Theorem 3.5 that XN = 0 for all normal subgroups 1 ~
N a G, including the case N = G. Now fix a minimal normal subgroup 1 ~ L a G;
we know from Theorem 3.1 that L is not solvable, as X ~ _ 0. Hence L is a direct
product of isomorphic non-abelian simple groups (see [8], Thm 2.1.5). Assume that
L is not simple; by Lemma 3.4, for some simple factor H a L. Also, note
that L = G) since it is a minimal normal subgroup. Now we have that

for all g E G, hence applying the same lemma once again, but
now to the L-action on X, we infer that X L ~ ~, a contradiction.

So L is simple; now set H = Cc(L). Then we have that H a G (this follows from
the fact that L a G) and so XH =1= 0, by Lemma 3.4. However we have assumed that
the action is essential, whence H = 1. D

The condition Cc(L) = 1 is equivalent to G C Aut(L). Using this proposi-
tion we can decide which groups admit essential fixed point free actions on acyclic
2-dimensional complexes by first determining the simple groups with such actions and
then looking at automorphism groups only for that restricted collection.

As the proof of the main theorem will require explicit knowledge about the finite
simple groups, it seems appropriate to briefly recall their classification, we refer to [9]
for a detailed explanation. We should point out that it is by now common knowledge
that complete details of the proof of the Classification Theorem were not available
when it was announced in 1981; crucial work involving the so-called quasithin groups
was never published and is known to contain gaps. Fortunately this has been resolved
thanks to more recent work by Aschbacher and Smith and although a full account
has not yet been published, a draft of their manuscript (over 1200 pages long!) is now

available on the world wide web (see ~3~ ) .
The following theorem encapsulates our understanding of finite simple groups, and

its proof requires literally thousands of pages of mathematical arguments by many
authors.

THEOREM 3.7. - Let L denote a non-abelian finite sample group, then it must be

isomorphic to one of the following groups:
- an alternating group An for n > 5
- a finite group of Lie type, i.e. a finite Chevalley group or a twisted analogue(4)
- one of the 26 sporadic simple groups.

4. TECHNIQUES FOR CONSTRUCTING ACTIONS

One of the main results in [15] is an explicit listing of conditions which imply the
existence of fixed point free actions on acyclic complexes. We first introduce

(4)We should mention that the Tits group 2F4 (2)’ is actually of index 2 in the full Lie type group
2F4(2).



DEFINITION 4.1. - A non-empty f amily~5~ ,~ of subgroups of a group G is said to
be separating if it has the following three properties: (a) G ~ 0; (b ) any subgroup of
an element in F is in 0; and (c) for any H a K C G with KI H solvable, K ~ F if

It is not hard to see that any maximal subgroup in a separating family of subgroups
of G is self-normalizing. If G is solvable, then it has no separating family of subgroups.
For G not solvable we let S,CV denote the family of solvable subgroups, which is the
minimal separating family for G.

DEFINITION 4.2. - Given G and a f amily of subgroups 0, a is a

G-complex such that all of its isotropy subgroups lie in 0. It is said to be universal

(respectively H-universal) if the fixed point set of each is contractible (respec-
tively acyclic).

The following proposition relates the two previous concepts in our situation.

PROPOSITION 4.3. - Let X denote a 2-dimensional acyclic G-complex without fixed
points. Let F _ ~ H C G X H ~ ~ ~ . Then 0 is a separating f amily of subgroups of
G, and X is an H-universal (G, 

Given a family of subgroups 0, let N(0) denote the nerve of F (regarded as a
poset via inclusion) with a G-action induced by conjugation. Given any set H of

subgroups in G, we let denote the poset of those subgroups in F which contain
some element of H. For a single subgroup H we use the notation and to

denote the posets of subgroups containing H or strictly containing H, respectively.
We denote X x = 

The following are two key technical lemmas which will be required:

LEMMA 4.4. - If X denotes a universal (H-universal) (G, .~’)-complex then there
exists a G-map X  N(0) which induces a homotopy equivalence (homology equiva-
lence) between X ~ and 

LEMMA 4.5. - Let F be any f amily of subgroups of G, and let .~o C .~’ be any

sub f amily such that N(,~’~H ) N ~ for all H E 0 - 00. Then any (H-)universal
(G, F0)-complex is also an (H-)universal (G, and N((F0)H) ~
for any set H of subgroups of G. 

’ ’

A complex Y is said to be homologically m-dimensional if Hn(X, Z) = 0 for all
n > m and Hm(X, Z) is 7 -free. For later use we observe that, for 1, if X

is an m-dimensional acyclic complex, then any subcomplex of X is homologically
(m - 1 )-dimensional and that the intersection of a finite number of homologically
(m - 2)-dimensional complexes is also homologically (m - 2)-dimensional.

(5) A family is a collection of subgroups of a group G which is closed under conjugation.



The following is a crucial criterion for the constructions we are seeking.

PROPOSITION 4.6. - Let G be any finite group and let .~’ be a separating f amily
for G. Then the following are equivalent:

- There is a (finite) 2-dimensional H-universal (G, 
- is homologically 1-dimensional for each subgroup H E 0.
- is homologically 1-dimensional for every set ~l of subgroups of G.

Given a separating family ,~’ of subgroups of G, we say that H E .~ is a critical
subgroup if is not contractible. Given the above, we can concentrate our
attention on the family S,CV and its subfamily of critical subgroups, denoted 

First we record conditions which allow one to show that certain subgroups in a
family are not critical.

LEMMA 4.7. - Let ,I be any family if subgroups of G which has the property that
H C H’ C H" and H, H" E .~ imply that H’ E 0. Fix a subgroup H E 0; then

is contractible if any of the following holds:
- H is not an intersection of maximal subgroups in 0.
- There is a subgroup H E .~’ properly containing H and such that H C K n H for

We can now state a simple sufficient condition for the existence of a 2-dimensional
H-universal (G, 0)-complex:

PROPOSITION 4.8. - Let .~ be any separating family of subgroups of G. Assume

for every non-maximal critical subgroup 1 ~ H E 0, that Nc(H) E 0, and that
H C for all non-maximal critical subgroups properly containing H.
Then there exists a 2-dimensiorcal H-universal (G, F)-complex.

We can in fact give a concrete description of the complex. For this we must

introduce an integer associated to H E 0.

DEFINITION 4.9. - If H E 0, a f amily of subgroups of G, we define

Now let be conjugacy classes representatives for the maximal sub-

groups of 0, and let Hi , ... , Hk be conjugacy class representatives for all non-maximal
critical subgroups of 0. Then there is a 2-dimensional H-universal (G, 0)-universal
complex X which consists of one orbit of vertices of type G/Mi for each 1  i  n,

of 1-cells of type G/Hj for each 1  j  k, and free orbits of 1- and
2-cells. If G is simple(6) then X can be constructed to contain exactly free orbits

of 2-cells, and no free orbits of 1-cells.

(6) In fact G must satisfy an additional technical condition which does not affect the results here.



5. EXPLICIT ACTIONS

In this section we will outline the construction of fixed point free actions on acyclic
2-dimensional complexes for the simple groups PSL2(2k), for k  2; PSL2 (q) for
q - ~3 (mod 8) and ? ~ 5; and for Sz(2~) for odd l~ > 3.

Example 5.1. - Let G = PSL2 (q), where q = 2k and k  2. Then there is a

2-dimensional acyclic fixed point free G-complex X all of whose isotropy subgroups
are solvable. The complex X can be constructed with three orbits of vertices, with
isotropy subgroups isomorphic to B = Fq x Cq-l, D2(g-i) and D2(q+1); three orbits
of edges with isotropy subgroups isomorphic to Cq-l, C2 and C2 ; and one free orbit
of 2-cells.

Here B denotes a Borel subgroup, expressed as a semi-direct product isomorphic to
(C2)k ~a Cq-l, identified with the subgroup of projectivized upper triangular matrices.
In our notation Cr denotes the cyclic group of order r and Dr denotes the dihedral
group of order r. In fact can be identified with the subgroup of monomial
matrices.

This example can be explained from the following analysis. The conjugacy classes
of maximal solvable subgroups of G are represented precisely by the groups B, D2(g-i) >
and D2(q+1) . The non-maximal critical subgroups must be intersections of maximal
subgroups, one can check that up to conjugacy we get Cq-1 , C2 and 1. The precise
numbers of orbits which appear is determined by calculating the integers is£v(H) for
the isotropy subgroups.

This example can actually be constructed directly using the 1-skeleton Y1 of the
coset complex Y for the triple of subgroups (Kl, K2, K3) _ (B, D2(q_1), D2(q+1)) in
G = PSL2(Fg) given by the maximal solvable subgroups. We can describe Y as the
G-complex with vertex set G/ K1UG/ K2UG/ K3, where G acts by left translation, and
with a 1-simplex for every pair of cosets with non-empty intersection and a 2-simplex
for every triple of cosets with non-empty intersection. The following picture describes
the orbit space Y/G:

It is not hard to see that as G = (Kl, K2, K3 ) , the complex Y is connected; however
(as shown in [2], § 9) it is not acyclic for 1~ > 3, where q = 2~. However, one can show



that the module Hl (Yl, Z) is stably free - this involves a geometric argument based
on the fact that Y1 is a graph such that the fixed point sets are either contractible
or empty for all subgroups 1 ~ H C G and contractible for all p-subgroups in G. The
fact that G is a nonabelian simple group implies that the module must in fact be free
(for a proof see [15], Prop. C.4.). Now we can simply attach a single free G-cell to Y1
to kill its homology, yielding the acyclic complex X.

Carrying out this analysis in the classical case G = A5 yields an acyclic complex X
(which in this case is actually identical to the complex Y) whose cellular chains give
a complex of the form(7)

Example 5.2. - Let G = PSL2(Fq), where q = 5 and q == ~3 (mod 8).
Then there exists a 2-dimensional acyclic fixed point free G-complex X, all of whose
isotropy subgroups are solvable. More precisely, X can be constructed to have four
orbits of vertices with isotropy subgroups isomorphic to Fq x C~q_1~~2, Dq-l, Dq+i
and A4; four orbits of edges with isotropy subgroups isomorphic to C~q_1)~2, C2 x C2,
C3 and C2; and one free orbit of 2-cells.

These examples are slightly more complicated as the structure of the complex will
depend on the value of q modulo 8.

Before explaining the final set of examples, we briefly recall the structure of the
Suzuki groups Sz(q) (see [6], ~11~, [19] for details). Fix q = 22’~+1 and let 9 E Aut(Fq)
be the automorphism x8 = X2k+l = x~ (note that (x8)8 = X2). For a, b E Fq and
A E (I~q ) * , define the elements

(7) If we consider the original construction discussed in § 1 of an acyclic A5-complex, then one can
obtain the cellular structure below by subdividing each pentagon into a union of ten triangles.

ASTERISQUE 290



Then (M(q, 9), T) , and under this identification the following hold

(1) is the 2-Sylow subgroup of Sz (q) .
(2) There are four conjugacy classes of maximal subgroups in Sz(q) which are

solvable: (B), (N), (M+) and (M-), where

These are all the maximal solvable subgroups in Sz(q).

the four factors in this expression are relatively prime.
We now describe the third set of examples.

Example 5. 3. - Let q = 22k+l, for any k > 1. Then there is a 2-dimensional acyclic
fixed point free Sz(q)-complex X, all of whose isotropy subgroups are solvable. X
can be constructed to have four orbits of vertices with isotropy subgroups isomorphic
to M(q, 8), D2(q_1), C4 and C4; four orbits of edges with
isotropy subgroups isomorphic to Cq-i, C4, C4 and C2 ; and one free orbit of 2-cells.

6. NON-EXISTENCE OF FIXED POINT FREE ACTIONS

In this section we outline methods for showing that most finite simple groups
cannot act on an acyclic 2-dimensional complex without fixed points. The first result
in this direction is due to Segev [16].
THEOREM 6.1. - I f G is the alternating group An, with n > 6, then there is no fixed
point free action of G on any acyclic 2-dimensional complex.

Later this was substantially extended by Aschbacher-Segev [2], who proved:
THEOREM 6.2. - I f G is a finite simple group which acts on an acyclic 2-dimensional
complex without fixed points, then G must be isomorphic to either a group of Lie type
and Lie rank one, or isomorphic to the sporadic simple group Jl (the first Janko
group ).
We will now sketch the key arguments used to establish these results, which (by

the Classification Theorem) rule out most of the finite simple groups. The following
lemma will be referred to as the four subgroup criterion.

LEMMA 6.3. - Let G be a finite group and X a 2-dimensional acyclic G-complex. If
Hl, H2, H3, H4 C G are subgroups such that for any then



Proof. - Suppose that in fact XH1,H2,H3,H4~ = ~. Let H = {H1,H2,H3,H4}. Now
Xx is the union of the acyclic subcomplexes X Hi, which are such that any two or
three of them have acyclic intersection, but the four have empty intersection. The
homology of XH is isomorphic (see [5], p. 168) to that of the nerve of the corresponding
acyclic covering; yielding H2 (X ~, 7~) ^--’ H2 (~2, ~) N Z. However we know that X ~
must be homologically 1-dimensional, which yields a contradiction. D

We now apply this result to multiply transitive groups.

PROPOSITION 6.4. - Suppose that G acts 4-transitively on a set S with a point sta-
bilizer H C G. If X is a 2-dimensional acyclic G-complex such that X ~ ~ ~, then

Proof. - If ~S = 4 then G is an extension of the form 1--~ Q --~ G -~ K -> l, where
K C ~4 and Q C H. By Theorem 3.1, ~ ~ XQ must be acyclic, and as K is solvable
its action on X Q must have a fixed point and we are done. So assume that 5, and
fix four elements sl, s2, s3, s4 e S. For each z = 1,2,3,4, let 77~ C G be the subgroup
of elements which fix sj for all j ~ i. For each {i,j,k,r} = {1,2,3,4}, 
is the point stabilizer of sr and therefore fixes a point in X by assumption. Hence by
Lemma 6.3 (where G = (Hl, H2, H3, H4~), X G ~ 0. D

We apply this to show that the alternating groups An for ?~ ~ 6 do not admit
fixed point free actions on acyclic 2-complexes. Note that An is (n - 2)-transitive on
{1, 2, ... , ?~}, with point stabilizer An- and that m-transitivity implies k-transitivity
for k x ?7Z; hence An is 4-transitive on {1,..., n~ for all 7~ ~ 6 (see [I], page 56). If X
is a 2-dimensional acyclic An-complex, then by our previous proposition, XAn =1= 0
if XAn-l =1= 0. Hence by induction we are reduced to considering the case when
G = A6; assume that X is a 2-dimensional acyclic G-complex with X~ = 0. Using
the subgroups Hi = ((i, 5, 6)) for i = 1, 2, 3, 4 we can show by contradiction that
XH = 0 for H = Alt{l,..., 5} (using the covering argument as before). Using an
outer automorphism we can thus establish that XH = 0 for any H C G with A5.
Next we consider the collection of subgroups

again applying the covering arguments and comparing with the homology of the nerve
of this covering we see that Z) 7~ 0, a contradiction. We refer to [16], page 39
for details.

This method can also be applied to the Mathieu groups Mn ; for n =11,12, 23, 24
they all act 4-transitively on a set with point stabilizer Now Mlo contains A6
as a subgroup of index two, hence every action of Mi i or M12 on an acyclic 2-complex
must have a fixed point. To obtain the same result for M23 and M24, it suffices to

establish it for M22, which we will do subsequently.



The case of simple groups of Lie type, and of Lie rank at least equal to 2 can also be
handled with these arguments (see [6] for background). We start with a basic lemma
about parabolic subgroups.

LEMMA 6.5. - Let G be a finite simple group of Lie type. Let ~ be the root system
associated with G and let ~+ and ~_ be the sets of positive and negative roots. Fi~ a
set J of simple roots which does not contain all of them, and let L J be the subgroup gen-
erated by the diagonal subgroup H together with the root subgroups Xr for all r E ~J~ .
Let Uj and v,~ be the subgroups generated by all Xr for roots r E ~+ or r E E_,
respectively, which are not in (J) . Then UJ a PJ = and Y~ a P~ = 
UJ and v~ are nilpotent and (UJ, VJ) = G.

In our context we obtain the following fixed point theorem

LEMMA 6.6. - Let G be a finite simple group of Lie type, and let P C G be one of
the parabolic subgroups PJ or P~~ in the previous lemma. Then for any action of G
on an acyclic 2-complex X, X P =1= 0.

Proof. - Let us assume that XC = 0. Then there are subgroups U~  Pj, Vj a PJ
and LJ = PJ n PJ such that UJ and VJ are nilpotent, Pj = UJLJ, PJ = VJLJ,
and G. Note that XUJ and are acyclic, disjoint and LJ-invariant.
Considering the subspaces A = and B = and the action of L J, we see that

(Corollary 3.3); similarly we conclude from Lemma 3.4 that XPJ and X P~
are non-empty. D

Now we can prove

THEOREM 6. 7. - I f G is a simple group of Lie type and Lie rank at least two, then
every G-action on an acyclic 2-dimensional complex has a fixed point.

Proo f. - Take a root system £ = ~+ U ~ _ for G and let Jl U J2 be a decomposition
of the set of simple roots as a disjoint union of non-empty subsets. For each i = 1, 2,
set H2 = E Ji), and Hi- = E JJ. The subgroup generated by
any three of the 77~ is contained in one of the parabolic subgroups PJi or PJ2 and so
has non-empty fixed point set in X. But in fact one can verify that = G,
since it contains all subgroups Xg, for simple roots s and hence X G ~ ~ by the
four subgroup criterion. D

In [2], Aschbacher and Segev were able to apply the four subgroup criterion to
prove that any sporadic simple group other than the Janko group Ji acting on an
acyclic 2-complex has a fixed point. In [15] a different treatment is given, showing
that all the sporadics can be handled using a consistent technique which relies on
understanding the subgroup structure of these groups in some detail. The essential
result is the following.



PROPOSITION 6.8. - Let ,~’ be a separating family for G and let Kl, K2, K3 E ,~’ be
three subgroups such that neither K2 nor K3 is conjugate to Kl. Let Kij = Ki n Kj
and K = Kl n K2 n K3. Let ,~o C ,~’ denote the subfamily consisting of ,~~ together
with all subgroups conjugate to any of the Ki, K2j or K. Assume that the following
conditions hold, where G’ _ K2, K3) :

- - . , ..

. Kl is maximal in 0.

. There is no H E 00 such that K C H C K12 or K12 C H C Kl .

. NG(K1) n n NG(K) = K

. The triples (Kl, K12, K) and (Kl, K13, K) are not G-conjugate.
Then H2(N(F(k)), Z) ~ 0 and so there is no 2-dimensional, H-universal (G, F) -
complex.

This result can be proved as follows: the coset complex Y for the triple (Kl, K2, K3)
must have H2 (Y, ~) ~ 0 by the first hypothesis (this follows from a counting argu-
ment) ; the other conditions allow one to push a non-zero class non-trivially into

via the homomorphism induced by the G-equivariant simplicial 
N((.~’o)>(K)) sending each vertex in the barycentric subdivision Y* of Y to its

isotropy subgroup. By Proposition 4.6, this implies the stated result. This proposi-
tion can be applied systematically to yield

THEOREM 6.9. - Let G be any of the sporadic simple groups; then there is no
2-dimensional acyclic G-complex without fixed points.

We illustrate how this may be applied with two examples. Here we assume that
we are given a 2-dimensional acyclic X with a fixed point free G-action, and take ,~’
to be the separating family of H C G with X H =1= 0.

Example 6.10. - Let G = M22, one of the Mathieu groups. We can take
24 : A6, the subgroup which leaves invariant some hexad in the Steiner

system of order 22, and it has an obvious action on this set of order 6 (see [10], Thm
6.8). Then Kl can be taken to be the stabilizer of a point z in the hexad, and K2 the
stabilizer of some pair of points in the hexad including z. In this case L3 (4),

24 : 55, Kl2 N 24 : A5, K13 ~ 24 : A5, K23 ~ 24 : 54 and K ~ 24 : A4. Note
that the K12 and K13 are distinct parabolic subgroups in L3(4). The conditions in
our previous proposition can be checked to hold (note that from our previous results
we can see that the Ki all act with fixed points and hence are in F) and so we have
completed the verification that the Mathieu groups have no fixed point free actions
on acyclic 2-complexes.



Next we deal with the case Ji which was not covered by [2].

Example 6.11. - Let G = Jl, the first Janko group. Take K1 ~ (C2)3  G21, where
G21 is the Frobenius group of order 21, i.e. C7 x C3. Kl is a maximal subgroup
in Ji. Let K2 ^--’ C7 x C6 be the normalizer of a subgroup of order 7 in K12, and
let K3 ^--’ C3 x Dio be the centralizer in G of a subgroup of order 3 in K2. Then

Kl2 ^-_’ C7 x C3, K13 ~’ K23, and K = Kl n K2 n K3 ^--’ C3. Note that all these
subgroups are solvable, and so are in 0. We can verify that

while the other conditions are also easy to check, hence showing that Ji has no fixed
point free action on an acyclic 2-complex.

We now consider the finite groups of Lie type which have Lie rank exactly equal
to one. There are four families of such groups: the two dimensional projective special
linear groups L2 (q), the three dimensional projective special unitary groups U3 (q),
the Suzuki groups and the Ree groups = 2G2 (32~+1 ).

The following propositions are used to handle these groups.

PROPOSITION 6.12. - Let L be one of the simple groups L2(q) or Sz(q), where q = p~
and p is prime (p = 2 in the second case). Let G C Aut(L) be any subgroup containing
L and F a separating family for G. Then there exists a 2-dimensional H-universal

(G, if and only if G = L, ,~’ = S,CV and q is a power of 2 or q _
~3 (mod 8).

PROPOSITION 6.13. - Let G = U3(q), or 2G2 (32~+1 ) . Then there is no 2-dimen-
sional acyclic G-complex without fixed points.

These results are proved by combining our previous non-existence techniques with
the following additional notion. For any family of subgroups .~’ and any maximal
element M E .~’, we set = = N(~H E 1 ~ H C M}). Then
we have

LEMMA 6.14. - Let F denote a separating family for G. Let 00 C .~ be any sub-
f amily which contains and such that each non-maximal subgroup in F0 is con-
tained in two or more maximal subgroups. Assume that ,~’ satisfies the following two
conditions

(1) connected and Hl Z) = 0.
(2) There is a maximal subgroup M E .~’ such that is not connected.

Then there is no H-universal 2-dimensional 



Roughly speaking the proof of this lemma goes as follows: if such a complex did
exist, then by (1) the singular set must be acyclic; but the prescribed conditions imply
that the links at all vertices must be connected - hence contradicting (2).

In many instances this allows one to prove non-existence of a fixed point free action
by contradiction; assuming its existence we can then find a maximal subgroup in the
separating family such that the corresponding link is not connected. This of course
requires a rather intricate knowledge of the maximal subgroups and more generally
the finer structure of the groups under consideration. We refer to [15] § 6 for complete
details.

7. PROOF OF THE MAIN THEOREM

We are now prepared to sketch a proof of the main theorem. We recall the state-
ment.

THEOREM 7.1. - I f G is any finite group, then there is an essential fixed point free
2-dimensional , finite acyclic G-complex if and only if G is isomorphic to one of the
simple groups for 1~ > 2; PSL2 (q) for q = ~3 (mod 8) and q > 5; or 
for odd k ) 3. Moreover the isotropy subgroups of any such G-complex are all solvable.

Proof - We know that if G has an essential action on an acyclic 2-complex X without
fixed points, then there is a non-abelian simple normal subgroup L a G with a fixed
point free action and such that G C Aut(L). By the Classification Theorem, we
know that L must be an alternating group, a group of Lie type, or a sporadic simple
group. The results in the previous section rule out all groups on this list(8) except
possibly the ones in the statement of the theorem. However we have already seen that
these groups do in fact act on an acyclic 2-complex without fixed points, and that the

isotropy subgroups are all solvable. This completes the proof. D

The work of Oliver and Segev has provided a complete picture for understanding
fixed point free group actions on acyclic 2-dimensional complexes. There remains

however the problem of considering actions on contractible 2-dimensional complexes.
In fact Aschbacher and Segev [2] have raised the following

QUESTION 7.2. - If X is a finite contractible 2-dimensional G-complex, then is

This remains open. The results described here are a basic step towards investigating ,

this question but it will probably require a substantially different approach.

(8) In fact the Tits group 2F4(2)’ must be handled separately because it is not the full Lie type group
2F4(2).
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