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0. Introduction

One of the nicest results in algebraic topology is the theorem due to Atiyah [4] that
if G is a finite group, then the complex K-theory of its classifying space BG can be
computed from the formula

K*(BG) = R(G)" , 0.1)

where the term on the right is the completion of the complex representation ring of
G at its augmentation ideal. The goal of this paper is to prove a similar result for
certain infinite discrete groups which include arithmetic groups as well as many
other geometrically interesting classes of groups. To be specific, we consider groups
I’ of finite virtual cohomological dimension (see §1 for definitions) acting with finite
isotropy on a contractible complex X such that X/I' is compact (by the work of
Borel and Serre [6], all arithmetic groups of finite vcd will satisfy this condition).

The most obvious difficulty in such a project is working with the representation
ring of a non-compact group. To deal with this, we construct a modified version of
R(I') wsing families of subgroups in I'. We have

Definition. Let & be a family of finite subgroups in I', then
Rz(I') = lim R(H).

HeF

Our assumptions on I" imply that it has only finitely many finite subgroups up
to conjugacy and in fact we have

Theorem. If % is the family of all finite subgroups in I, then Rz (I') is a commutative,
unitary ring which is free abelian of finite rank n(I"), the number of conjugacy classes
of elements of finite order in I'. In particular Rz (I') = Z if and only if I is torsion-free.

* Partially supported by an NSF grant and an NSF Young Investigator Award (NYI). This paper
is dedicated to William Browder on occasion of his sixtieth birthday.
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Similarly if we use & (p), the family of all finite p-subgroups of I', we obtain
aring Rz ,)(I') of rank n,(I"), the number of conjugacy classes of elements of order
a finite power of p in I'. Analogues of Artin’s Theorem of Brauer’s Theorem can be
proved for these rings.

Next we relate K*(BI') with Rz (I') by using equivariant K-theory. Namely, if
we take X as before, then we construct a ring homomorphism

K#(X)—>Rz(I), (0.2)
which is a rational surjection. Fix an extension
1-I">TI->G-1,

where I’ is torsion-free, and G is finite. Then, as I'” acts freely on X, K§(X) =
K¥(X/I'"). On the other hand, it is not hard to see that BI' ~ X/I"" x ¢ EG, hence

K%(X/I")" =~ K*(BI') (0.3)

by the Atiyah-Segal Completion Theorem [5] (here we use IG-adic completion,
where as before IG < R(G) is the augmentation ideal, and K&(X/I'’) is an R(G)-
module). Hence we have a “completed map”

K*(BI') > R4(I')". (0.4)

As one would suspect, this map is often far from being injective (of course if I' = G,
this is simply Atiyah’s isomorphism). Consequently our following step is to analyze
it in detail. For this we first remark that unlike the ordinary cohomology of
BI', K*(BT') will contain substantial information from the finite subgroups of I,
which is torsion-free (again, for I' = G, all of it is torsion-free). Hence a calculation
of (0.4) modulo torsion is a worthwhile approach to our problem.

For technical reasons it is convenient to work p-locally. Let K,() denote
K-theory with coefficients in the p-adic integers Z,, and let @, denote the field of
p-adic numbers. In the following statements and in the rest of the paper tensor
products will be taken over Z or Z,; we omit them from our notation, as it will be
clear from the context which ring is involved. Our main result is

Theorem 6.3. There is a surjection of rings

¢p
KyBI')® Q,—Rz (N ®Q,

and its kernel is additively described as

I3,®Q,=2 @ K*BCHNIN"RQ,,
yeTéZs)p(I“)
where C(y) is the centralizer of y in I, y ranges over I'-conjugacy classes of elements in
Tors,(I') = {y e I'||{y>| = p", for n = 0}, and H, is the finite group C(y)/C(y) " I"".

As B(C(y) n I'") is of finite type, we in fact have

@ H’(BC(y), Q) = even
K*BCH) nIM)Fe@Q={'

DHECOQ g
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Consequently, the kernel of ¢, is determined by the rational cohomology of BC(y),
y € Tors,(I') and we have

Corollary. K7 (BI') ® Q, = R;(,(I') ® Q, if and only if H*(BC(y), Q) = 0 for every
v € Tors,(I').

An interesting example of the above occurs when p = 2, I' = SL;(Z) (example
3.2):

K3(BSL;(Z)) ® Q;
a —1,a% — 1
B —2— 20,048, — By,
= Qo 2, By, B2l B3 —2 = 2uy, 0,8, — P2,
a0y — oy — oy + Loy fy — 20y — B + 2,
BBz — 2By — 2B, + 4, 0,8, — 20, — By + 2.

If I' = Gy *; G,, an amalgamated product of finite groups, then

Ry I ®Q, * even,

K;BIN®Q,= {Ig*(\/z{p(ngl)@ Q, * odd,

where

vp(I') = Z dimg, HY(BC(y), Q).
ve Tch)'zp ()

In particular we obtain the rather curious formula (6.5):
np(F) = np(Gl) + np(GZ) — np(H) + Up(r)'
Another consequence of our results is

S ] . .
Corollary. If I'y — I'; is a homomorphism between two groups satisfying our hy-
potheses which induces an integral homology isomorphism, then, for all primes p

Rs () ®Q,= Rz ,(T'2)®Q,

(in particular n,(I'}) = n,(I',)) and

&) ( ® H/(BC(y), Q))z & ( P HI(BC(p), Q))

(€3] j even (w J even

yeTorsp(I'1) pneTorsp(I2)
® (@mscne): @ (@#ecwo)
(¢2] Jj odd (u) Jj odd

veTorsp(I'y) peTorsp(I'2)

_ If, for example, I', is finite in the preceding corollary, then automatically
H*(BC(y), Q) = 0 for all y € Tors,(I',), for all primes p.
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Burghelea has shown [9] that there is an additive decomposition for the
periodic cyclic homology of QI'. Comparing this to our results we obtain (see §7 for
notation).

Theorem. For the groups I' satisfying our hypotheses,

PHC,@QI = KfX)®Q®| P T.(, Q)
yé¢ 'lS(})yl)’s aIr)
(Here Tors(I') denotes all elements of finite order in I'.)

We remark that under our assumptions, one can express the terms 7, (y, Q) as
the stable value of H,(B(C(y)/<{y>), @), which can easily be verified as being
periodic from the Gysin sequences of the fibrations S — BC(y) = B(C(y)/<{y>).
What this formula means is not clear at this point; but it indicates that the “elliptic”
part of cyclic homology can be expressed using equivariant bundles.

This paper can be divided into two parts. Sections 1-3 deal with preliminaries
and the main algebraic properties of the representation rings Rz(I"), where & is
a family of finite subgroups in I'. Sections 4-7 describe the K-theory of BI.

The complete results in this paper were first announced in [3]. The author
would like to thank Thomas for generously sharing some unpublished work [24]
and Karoubi and Mislin for very helpful correspondence and conversations.

1. Preliminaries

In this section we provide a brief description of the class of groups which will be
considered in this paper, including the main algebraic and geometric properties
which we will use in later sections. A good reference for this is [8].

Definition 1.1. A discrete group I’ is of finite cohomological dimension (cd I < o)
if there exists a finite dimensional K(I', 1).

Definition 1.2. A discrete group I is of finite virtual cohomological dimension
(ved I < o0) if there exists a subgroup I'" < I of finite cohomological dimension
such that the index [I":I''] is finite.

The following is a key example of this kind of group.

Example 1.3. Let I' = SL,(Z), p an odd prime.
Then the level p congruence subgroup I'(p) is known to be of finite cohomologi-
cal dimension, and we have an extension

1> I'(p)~> I —SL,(F,) > 1,
hence verifying that ved I' < 0.

The above is an example of an arithmetic group, which are an important class of
groups to which our results will apply. However there are other interesting
examples such as mapping class groups and the outer automorphism group of
a free group which can be analyzed using our methods.
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Note that if cd I' < oo, then I' must be torsion-free. Also observe that if
ved I' < oo, then we may choose I'" < I' (as in 1.2) to be normal in I". From now on
we assume given a fixed extension

1-I"->T'->G-1, (1.4)

with cd I'' < o0, |G| < 0.
Next we recall a construction due to Serre [19].

Theorem 1.5. For any discrete group I of finite vcd there exists a finite dimensional
I'-CW complex X with the following properties

(1) X2 4 @ <= H < I' is a finite subgroup,

(2) X" is contractible for all H < T finite.

In later sections we will make extensive use of this complex. Note that I = I
acts freely on X, hence BI"" ~ X/I"". This inherits a G = I'/I"’ action where the
isotropy subgroups are exactly those which are images of the finite subgroups in
I' under the projection I'-3 G. Using this projection, the universal space EG
becomes a I'-space and hence I' acts diagonally (and freely) on the contractible
space X x EG, from which we deduce

BI ~ X/I'" x EG. (1.6)
G

The fact that X /I" is finite dimensional makes this a rather useful formula, but we
will need additional finiteness hypotheses.

Definition 1.7. I is said to be homologically finite if H'(I', M) is finitely generated
for all i = O for any ZI'-module M which is finitely generated as an abelian group.

From now on we will assume that I" is homologically finite. Note in particular
that this implies

H¥X/I'",Z)~H*(I'',Z)~ H*(I', Z[I'/T""])

is finitely generated as an abelian group. Next we examine the G-action on X/I"".
If Q < G is a subgroup, it is not hard to see [8] that

(X/r?= 11 X"/I'" o Np(H),
HeC(Q)

where C(Q) is a set of representatives for the I'’-conjugacy classes of finite sub-
groups in I whose image in G is Q. From this we infer

rkzHo((X/I'")?, Z) = cardinality of C(Q)

from which it is clear that the number of I'-conjugacy classes of subgroups
mapping onto Q is finite if and only if (X/I"")¢ has a finite number of components.
We will make this assumption for every Q = G. Note that if Q is a p-group and
H*(I'", TF,) is finite, then standard Smith Theory arguments imply this fact. Hence,
if I' is homologically finite, then I has only finitely many p-subgroups up to
conjugacy.

Borel and Serre [6] showed that if I is an arithmetic group, then X /I’ can be
taken to be a finite complex, ensuring that the above finiteness conditions are
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automatically satisfied. In particular there are only finitely many elements of finite
order in an arithmetic group, up to conjugacy.

Given y € I of finite order let C(y) be its centralizer in I'. Then this group can be
described as an extension

1-Cy))nI"->C(y)->H,—>1, (1.8)

where |H,| < co. We will assume that C(y) is of finite homological type over @ for
each y € I of finite order. Note that Brown has shown [7] that if X/I"" is compact,
then this is automatically satisfied, from which it holds for arithmetic groups
by [6].

For the rest of this paper we will assume that X/I"" is a finite complex, which
automatically ensures the finiteness properties we need. It will be apparent how-
ever, that some of the results can be proved with the weaker assumptions pre-
viously described.

2. A reduced representation ring

In this section we will define a variant of the usual complex representation ring
R(I'); to begin we recall how it is defined. Let V, W be two finite-dimensional
C-vector spaces endowed with a I'-action by automorphisms (CI'-modules). We
can define V@ W and with respect to this operation the isomorphism classes of
I'-modules form an abelian semigroup. The associated abelian group is denoted by
R(I'); it consists of formal differences [ V'] — [ W] of isomorphism classes of CI'-
modules with an equivalence relation generated by

(V1-IWi~LVeZ]-[WeZ]

Using the tensor product, R(I") becomes a commutative ring with unit (the class of
the trivial representation).

Given that I' in general is not compact means that R(I') is generally not of finite
type. For example if I' = Z =~ {t), then t > e*™" n=1,2,... is an infinite
collection of irreducible, non-equivalent I'-modules. Our goal will be to construct
a suitable modification of this ring which is of finite rank and depends on a family
of finite subgroups in I'. We first recall

Definition 2.1. A family & of subgroups of I' is a non-empty collection of sub-
groups which is closed under (1) conjugation by elements in I' and (2) taking
subgroups.

More formally # can be considered as a category whose objects are the
elements in # and whose morphisms are generated by inclusions L € K and

conjugation by elements ye I, ¢,: K —» yKy ™.

The following are examples of families in I' which we will need.

Example 2.2. Let % (I') denote the family of all finite subgroups in I'. Up to
conjugacy, there are finitely many objects.

Example 2.3. Let % ,(I') denote the family of all finite p-subgroups in I', for
p a fixed prime; it also has a finite number of conjugacy representatives.
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Example 2.4. Let % ,(I') denote the family of all finite p’-subgroups in I (i.e. of
order not divisible by a fixed prime p); again up to conjugacy there are only finitely
many.

Example 2.5. Let Y be a I'-CW complex and let Z(Y, ') = {K < I'|Kx = x for
some x € X }. One easily checks that this is a family of subgroups in I.

We now introduce
Definition 2.6. If # is a family of subgroups in I', then
R, (') = lim R(H).

He#
Note. If I' = G, a finite group, then we have (see [20, 14])
(1) R(G) = limp.4 R(H), # = family of elementary subgroups of G.
(Brauer’s theorem)
(2) R(G)® Z[1/|G|] = limy.e R(H)® Z[1/|G|], € = family of cyclic sub-
groups of G.
(Artin’s theorem)

In general, given a family % of subgroups in I', we have a map induced by the
restrictions

R(IN—Zs lim R(H).

He#

The image of this map can be described as follows. Call two modules V, W% -
isomorphicif Vg =~ W/sfor all S € #. Let R4 (I') be obtained by taking the abelian
group associated to # -isomorphism classes; hence it is a quotient

R(IN)/15 = Rs(I') = imog,

where I is the ideal generated by the differences [ V] — [ W], where V and W are
Z -isomorphic. Equivalently we can express im ¢ as the image

I res
R(I')—— [] R(H).
HeF
In particular if there are finitely many objects in & up to conjugacy, we have
a commutative diagram

RI) —2— @ R(H)

(H)
HeZ

N r
R4(I')

from which we deduce Rz(I') = Rz(I').
In some cases these two rings will coincide. More generally, we have

Proposition 2.7. Let F be a family of finite subgroups in I' with finitely many objects
up to conjugacy. Then Rz(I')/Rz(I') is a finite group.
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Proof. If He %, let I'y = n~!(n(H)) = I', described as an extension
l1>I">Ty->n(H)-1,

where n:I" - G is the projection (1.4). Then H < I'y and it is mapped isomorphi-
cally onto n(H); hence R(I'y) restricts onto R(H) (it is a split surjection). Further-
more note that fory e I', yI'yy ™' = I',y,-1 and thatif H < K, then I'y = I'k. Using
the reduced representation ring for each I'y, we infer that the restrictions induce an
epimorphism

lim Ry r,y(I'a) > lim R(H) = Ry (D).

He# He#
Note that [I':I'y] <o, hence we have a well-defined induction map
R(I'y)— R(I'). From the induction-restriction formula it follows that two repre-
sentations of I'y; which are isomorphic on finite subgroups will evidently induce up
to representations of I' with this same property. Hence there is a well-defined
induction on the reduced rings Rg ) (Fy) = Rz (). As in the case of the proof of
Artin’s theorem [20], it will now suffice to show that

Res:Rz(IN Q@ C > P Ry rpy(Tu)® C

(H)

is injective, but this follows from the factorization

R#(I) > P R(H)
(H)
d
N 7
@ Rz ryy(T'n)
(H)

Note that if € is the category of all cyclic subgroups in &, then Rz (I') = Rg(I'); in
particular if I' = G (a finite group), then R(G) = R¢(G).

In later applications we will be concerned with the rationalization of these
rings, in which case we can indistinctly use Rz (I") or Rz(I').

Let I'y < I denote a subset of elements closed under conjugation; then we have
a decomposition (as I'-sets under conjugation)

Ir=ro[[(I'-Ty).
Recall the definition of the ring of complex class functions on I™:
C(Ir'y= Mapy(Hom(Z,T'), C) .
The preceding decomposition yields a direct sum of algebras
CIy=CTo)®CI —1TIy).
Now suppose % is a family of subgroups in I', then we may take
Fo=To(F)={yel|YeF}.

Denote by n(#) the number of distinct conjugacy classes of elements in I'o(F );
then C(I'y(#)) is an algebra of dimension n(% ). Given H € &, there is a character
map

xu:R(H)—> C(H) .
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These can be assembled to yield a map

xr: Rz () — lim C(H) .

He#

However, using the bijection between li_m}HE # Hom(Z, H) and conjugacy classes of
homomorphisms y: Z — I" with values in I'y, we can identify the term on the right
with C(I'o(#)). There is of course also a standard character map

17 Rz () > C([o(F)) ,

which relates to the other by a commutative diagram

Rg(l') —— C(I'o(F))

! l=
Rs(I') —— lim C(H)
He%

To simplify matters, we use the notation C(I'o(F )) = C#(I'). As in the case of finite
groups, it is of interest to examine this character map more closely.

Theorem 2.8. If & is a family of finite subgroups in I with n(#) < oo, then the
character map

X7 Rz(l') > Cx(I)
is an isomorphism after complexification of the domain.

Proof. For any finite group, the character map R(H) — C(H) induces an isomor-
phism after tensoring the domain with C. Hence we obtain that yz induces an
isomorphism

Rs(IN® C = ( lim R(H)) ®C
~ lim RH)®C) = Cs(I). [
He%

Corollary 2.9. Assume that n(# ) < oo; then Rz(I') is a free abelian group of this
rank.

Let n(#(I')) = n(I"), n(F,(I')) = ny(I") and n(F,(I')) = n,(I"). Then for the
groups we consider all these numbers are finite, and represent the Z-rank of the free
abelian groups Rz (I'), Rg(,)(I') and Ry, (I") respectively.

For computational purposes it is convenient to provide an explicit description
of R#(I'), in terms of its natural embedding in Hae # R(H). It can be described in
terms of stable elements, similar to the finite case (see [20]). More precisely we can
identify Rg(I') with the sequences {xy}y.# such that

(1) if H = H', then resh (xy) = xy
(2) if H' = yHy ™', then c}(xy) = xg.

3. Explicit calculations

The first example we consider is an amalgamated product of finite groups
G1,G, along a common subgroup H, denoted I' = G, *5 G,.
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Example 3.1. I’ = G, 5 G,.

Every element of finite order in I is conjugate to one either in G, or G,; these
are maximal finite subgroups in I'. Hence if & is a family of finite subgroups in
I' we have an exact sequence

@ = res; — res,

0— R#(I') > R#(G,) ® R#(G)————— Rz (H) .
(@ Gy, =2Z/n, G, =Z/m, H= {1} and (m,n) =1, & = F(I'); then we have
I'=7Z/nxZ/m and
0->Rz(I')>R(Z/ND®R(Z/m)—-Z—0.

In fact if p,, p,, are generators for R(Z/n) and R(Z/m) respectively, then Rz (I') is
generated by x = (p,, p.,) and we have

Re@Z/n+Zm) = Z[x]/(x" — D"+ x"" 24+ -+ x+1).

Note that this has rank n + m — 1, as expected from counting conjugacy classes of
elements of finite order in I'.

b) Gi=Z/2, G, =Z/2, H= {1}, F = F ().

In this case I' = Z/2 % Z/2 = D, the infinite dihedral group, we have an exact
sequence

0->Rz(T')>R(Z]2Q)®R(Z/2)>Z -0,
and

21,y —1

X
R#(Dy) = Z[x, y]/ :
xy—x—y+1

which is free abelian of rank 3.
() Gy =1Z/6,G,=Z/A, H=Z2, F = F(I).
In this case I' = Z/6%z,, Z/4 =~ SL,(Z) and we have an exact sequence

0—->Rz(I')> R(Z/6)® R(Z/4) - R(Z/2) - 0.
A simple calculation shows that
Raz(I) = Z[w]/wB + w® —w? — 1

note that this has rank 8, the number of conjugacy classes of elements of finite order
in SL,(Z).

d) Gy =83,G,=83, H=Z/3, F = F3(I') = F(3).

We have an exact sequence

0- R.of’(s)(r) i Rf(s)(sﬂ @® Rf(a)(Ss)‘—(e“’ Rﬁ(3)(z/3) .

Now
Rgz3)(83) = R(Z/3)%? = (1, wy + w3)
R#3)(Z/3) = R(Z/3)
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and Rz@)(I') = Z[x]/x* — x — 2, included diagonally in Rgz3,(S3) ® Rz3(S3).
Note that n3(I") = 2 and that coker ¢ = R(Z/3)/R(Z/3)%/?. Later we will see that
this cokernel (modulo torsion) can be determined cohomologically.

Example 3.2.

@) I'=S8L3(Z), # = F(3) = F5(I).
Up to conjugacy, I' has two 3-subgroups, generated by

0 0 1 0 1 0
1 0 0 and -1 -1 0],
010 0 0 1

with the full automorphism group Z/2 present in their Weyl group. Hence we have
an exact sequence

0 - Rypy(I) > RZ/I? @ REZIE? > T 0.

If R(Z/3) = Z[w]/w? — 1, then im J is generated by (1, 1) and
a=(w+w32) and B=(2,w+ w?).

Thus we obtain

a? — o — 2,

Rz3(SL3(Z)) = Z[o, B] p*—p -2,
af — 2+ f—2),

where n;(I") = 3. Note that this simply shows Rgz3,(SL3(Z)) = Rz 3),(S3 * S3).

(b) I' = SL3(Z), F = €(2) = ¥,(I'), cyclic subgroups of order a power of two.
Up to conjugacy, I" has four non-trivial elements of order 2", wherer = lor2(r = 3
does not occur). They are represented by

-1 0 0 0 1 0 1 0 1
A=l 0 -1 0|, B=|1 0 0y, C=10 0 -—-1]j,
0 0 1 0 0 -1 0 1 0
0 -1 0
D=1 0 0],
0 01

where 42 = B2 = C* = D* = 1. Note that D? = 4, and that
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is conjugate to B, as

10 0 1 0 0
C? 00 —1)= 0 0 —-1]B.
-1 1 1 -1 1 1

Hence the subgroups of order 4 are maximal and their automorphism group Z/2 is
present in their normalizers. We obtain an exact sequence

0 — Ry (I') = R(Z/4)F* @ R(Z/4H?* - Z -0 .
If R(Z/4) = Z[y]1/y* — 1, then Z/2 acts by y+> »>, and so
R(Z/H? = {1,y y + y3) .

Hence a basis for Rgp)(I') is given by (1,1), oy =(1,»%), a=(31),
B. =2,y + y¥) and B, = (y + y3, 2). The ring structure is described by

a? —1, a3 — 1
Bt —2— 20, ;1 — By,
Re2)(SL3(Z)) = Z[ay, 02, B1, B2 ] B3 —2 —2ay, a3, — B2 ,
a0y —og —aoy + 1, ayfy — 20 — B+ 2,
BiB2— 2By —2B> + 4, oaxffy — 20, — 1 +2 .

Note that as we saw in §2, Egz(p)(l“ ) 1s isomorphic to qu(,,)(l“ ) for any prime p.
Rationally they are both isomorphic to Rz, (I"). Also observe that as SL3(Z) only
has 2 and 3 torsion,

R#2(SLs(Z)) = Ry(SL3(Z)) and
R53(SLs(Z) = Ry2)(SL4(Z)) .

Example3.3. I' = GL,_(Z), # = # (p) = %,(I') p odd prime. Let { be a primitive
pth root of unity and R = Z[{] < Q({) the ring of algebraic integers. The number
of distinct R-ideal classes in Q({) is the class number Cl(p) and by the result due to
Diederichsen and Reiner [10] they correspond to a complete set of conjugacy
classes of elements of order p in I. As I has no elements of order p?, then
rkzRz (') = Cl(p) + 1.

Let 4 =~ Z/p — 1 denote the Galois group of the extension, which acts on the set
of ideal classes, with S; = stabilizer corresponding to the 4-equivalence class [A4;],
i=1,...,t(p) In this case we have an exact sequence

Clp)

0—+Rgr(p,F)—><@R(Z/p ) S 7'V 50,
We also have

Clip) 4 t(p)
( @ R(Z/p)> = DR(Z/p)*.



Characters and K-theory of discrete groups 501

Now as an S;-module,
R(Z/p)=Z & (Z[S:])“7,
hence,
R(Z/p)s‘ ~ Z([A:S,]+1) .

To verify that the ranks are correct, note that

7 tp) t(p)

( Y [4:8]+ 1)—(t(p)— )= [4:S]+1=Clp)+1.

i=1 i=1
In fact we have shown that if G; = Z/p x 1 S;, then
Rz)(GL,-1(Z)) = Rzp(Gi*Gyx- - %Gy,
in particular for Cl(p) = 1,
Ry )(GL,-1(Z)) = R(Z/p)**~" .

4. Equivariant K-theory

Let Y be a -CW complex such that Y/I' is compact. We recall that the I'-
equivariant K-theory of Y, denoted K (Y) is the Grothendieck group constructed
from the semi-ring of isomorphism classes of complex I'-bundles. Assume in
addition that the isotropy subgroups of the I'-action are all finite. Then I'" acts
freely on Y, and we have an isomorphism [18]

KNY)~ K&(Y/T"), 4.1)

where as before G = I'/T"’ (finite) and I'’ is torsion-free. Similarly we have an
isomorphism

KHY) = K&(Y/r) (4.2)

and KF(Y) will be a Z/2-graded ring with the usual finiteness properties.
Now let # be a family of finite subgroups in I'. We have restriction maps

KF(Y)— KE(Y)
for each He &, inducing a map
K522 tim K3(Y),
He%F

as it is compatible with respect to restriction and conjugation. Using the projection
onto a point we obtain a commutative square

Kxv) 222, lim K3(Y)
1 i (4.3)
RI) — =  Rs(l)

We denote

FKE(Y) = lim K5(Y) .
He¥
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To make this meaningful, we shall assume that for each He #, Y is H-equivari-
antly homotopic to a finite H-CW complex. Under this condition #KF(Y) is
a finitely generated R4 (I")-module. The following lemma is derived from (4.3).

Lemma 4.4. Let Y be a I'-CW complex with Y H-homotopic to a point for all He F,
a family of finite subgroups in I'. Then # K[ (Y) = R4z(I") and there is a commutative
diagram of rings

Kp(Y)
\(Pf(y)
T R#(I) .
7oz
R(T')

As a consequence of 4.4 and 2.7, we obtain

Corollary 4.5. Under the hypotheses of 4.4, there is a surjection of rings
0 I5(Y) > KX ® Q"L R, (IN®Q 0.

Consider the I'-complex X described in 1.5: it clearly satisfies the hypotheses of
4.4. In the following section we will analyze the preceding construction for this
I'-space in more detail, showing that K} (X ) determines K*(BI') after completion.

Example 4.6. I' = G, *4 G,, an amalgamated product of finite groups. We will
compute KF¥(X). Serre [21] showed that X may be taken to be a tree, with orbit
space X/I™:

H

G, G,

Hence I'' is a free group, X/I'’ a finite graph with a G-action having two orbits of
vertices and one orbit of edges. A simple Mayer—Vietoris sequence yields the
exactness of

0> KP(X) - R(G;) ® R(G,)— R(H) - Ki(X)—0
from which we conclude

Rz(I) *x even

KiX)~
r(X) {coker(resg1 —resy’) *odd ,

and hence Iz(X)= KNX) =~ R(H )/im(re:sg1 + resf,z). Applied to 3.1 (a)—(c) we
obtain K¥(X) = Rg#(I') in each of these cases. For (d) we see that KNX) = Z
and so

KXX)~ Re(I)® K*(S')  for I' = Syxz,3S; .
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Given a I'-CW complex Y satisfying the conditions mentioned at the beginning
of this section, we have a spectral sequence [18] converging to KF(X), with
E -term

P R(I',,) p even,
Ef’q — O'qE(Y/F)(q) (4'7)

0 p odd ,
where o, is an orbit representative for cells in the g-skeleton of Y. Note that this
term is Z-free, of finite rank, and the differential d, is induced from inclusions

I;,,,51,, anising from the I'-cellular decomposition of Y. As a consequence of
(4.7) we obtain

K?(Y)®Q@(®R(Faq)®02) Kr(Y) ®Q@<@R( )®Q>-

[oq] [aq]
q odd g even

Let Yo = {ye Y|I, % {1}}, the singular set of the action. Then I' acts freely on
Y — Y,, and we have

IKFHY)®Q) =y (K*(Y - Yo)/[)®Q) + Y (=1n(l,,).  (48)
[a'q]
To-q#:l

We apply this to the I'-complex X from (1.5). Now as (X — X)/I is finite,
AEK*((X — Xo)/T)® Q) = (X — Xo)/T)

(the usual topological Euler characteristic) and hence

HKFX)® Q) = 1 (X — Xo)/T)+ Y. (=1)n(l,,). (4.9)
[og]

Our goal is to express this in purely group theoretic terms. For this we denote by
S(I') the partially ordered set of non-trivial finite subgroups of I" (under inclusion);
then there is a correspondence

H— XH

Now X, = u X¥ each X is contractible and so are their finite intersections. Let
K denote this poset of fixed-points and | K| its nerve; our hypotheses imply that X,
is homotopy equivalent to | K |. The preceding correspondence can be thought of as
a map of posets

SIr'y-K

which was shown in [8] to be a I'-equivariant equivalence. Hence we have that
Xo = |S(T). o |

Now for a group I' as defined in (1.4), consider its group-theoretic Euler
characteristic,

A1) =yBI")/[I':I']. (4.10)

Recall that if Yis a I'-CW complex with Y/I finite, its equivariant Euler character-
istic is defined (see [8]) as

1Y) =) (= )ylly,) - (4.11)

[ai]
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We can now state a result due to Brown [8] expressing y((X — X,)/I') in group
theoretic terms:

(X — Xo)/T) = (') — xr(IS()]) (4.12)

the proof of which requires the equivalence of posets described above. Combined
with (4.9), this yields

(KFX)®Q) = x(I') — zr(ISD) + Y (=1)n(I,) .

[aq]

More elegantly expressed, we have a functor
sS(r )ﬁ Rings

H—-RH)®Q

and an associated H*(S(I'), #) (see [17]). The final term in the expression above is
y(H*(|S(I')|/T", #)), where we identify I'-conjugate elements and hence we obtain

Theorem 4.13. If X is a I'-complex satisfying the conditions of (1.5) and such that
X/I' is compact, then

AKF(X)® Q) — x(H*(IS(T)/T|, B) = x(I') — xr(IST)]) -

5. K-theory of classifying spaces

In this section we will show how the complex topological K-theory of the classify-
ing space BI’ can be calculated from the previous representation-theoretic data.

Let EG™ = G- - -* G (n times) denote the nth stage of the model given by
Milnor for the universal G-space EG. Then, using the fact that BI' ~ X/I'' xg EG
(1.6), we can define

K*(BI') = lim K* (X/F’xEG“"). (5.1)
G

Let R(G) denote the representation ring of G, with augmentation ideal I = R(G). If
Y is any G-space, there is a map induced by the projection ¥ x EG™ — Y which
factors as

o,: KX(Y)/I"K%(Y) - K*(Yx EG"‘))
G

for all n = 0. Atiyah and Segal [5] proved

Theorem 5.2 (Completion theorem). Let Y be a compact G-space such that KE(Y)
is finite over R(G). Then the homomorphisms {a, } induce an isomorphism of pro-rings
and hence

KyY) = @K*(Yx EG‘"’) = K* (Yx EG> ,
G G

the term on the left being the I-adic completion of K§(Y).
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From (5.1) and (5.2) we infer that
K*(BI') ~ K¢(X/I'")" (5.3)
provided (as we have assumed) that X/I"' is compact. Now the map from §4
@7 (X): K7 (X) - Rs(T')

is an R(G)-module map, as can be seen from the commutative diagrams, for H = I’
finite:

r -5 ¢
1 A
H

(that is, I'' = ker & is torsion-free). Therefore it induces a map
K*(Bl')— Rz(I')" (5.4)

which in the case I' = G, a finite group, is a case of the isomorphism (5.2), first
described by Atiyah [4]; this is not an isomorphism in general.

We note that our description of K*(BI') is independent of the choice of the
extension

1->TI'">T'>G-1.
Any other such extension
l-TI'"->I->H->1
yields a third extension
1-I'nl">TI->K-1.
Let Q =TI''/T' nI'" (a finite group), then G = K/Q, and
KEX/T') = Kio(X/T'nI'")/Q) = KR(X/T'nT'")

as Q acts freely on X/I'' n I'". This isomorphism induces an isomorphism of the
associated completions, using the ring map R(G) - R(K). Hence by symmetry we
obtain an isomorphism

KEX/T') = Ka(X/T'")
(and between the completed objects).

Example 5.5. I' = G, x4 G,.
We have already computed

R#(I') xeven
% ~ 4
KrX) = {R(H )/(imresyy’ + imresy’) *odd
and hence we obtain
R#(I)" *even
* ~ -
K*(BI') = {R(H)A/(im resy! + imresgy’) *odd .

Here we are using the fact that R(H) is a module over R(G), that I(G)-adic
completion corresponds to I(H)-adic completion (see [At]) and that, as R(G) is
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Noetherian, IG-adic completion is exact.
K*BZ/m*Z/n) = (Z[x]/x" — D"+ x""2 4+ -+ x+ )" (mn) =1

K*(BD,,) = (Z[x,y]/zi - i _yzy—+11>A
K*(BSL,(Z)) = (Z[w]/w® + w® — w? — 1)*
K*(B(S3 *z/3 S3))

z3,23,23 —z3 — 2,

> | K¥SYH®| Z[z4,25,23] [2125 — 25 + 2, — 1, 2125 — 23 — 224 + 2

2,23 — 23— 22, + 2

It is interesting to note that the abelianizations
ZinxZm ->Z/nxZ/m (n,m)=1
SL,(Z) - Z/12

induce cohomology isomorphisms, and hence applying the Atiyah—Hirzebruch
spectral sequence their classifying spaces will have isomorphic K-theory. Hence we
have isomorphisms

R(ZMmxZ/m" =(Z[x]/x" — )" 2 (Z[x]/x"— D"+ -+ x + 1)
R(Z/12)" = (Z[w]/w'? — 1)" = (Z[w]/(W® — 1)(w? + 1))".
These examples exhibit properties of completion using the representation ring of
a finite group of composite order. On the other hand, for D, the completion is
simply 2-adic completion, as in this case G = Z/2 x Z/2, a 2-group.

To make our approach truly effective, we need to have an understanding of the
ideal ker o < KF(X). To simplify matters, we look at its rationalization

051> K X)®Q->Rz(IN®Q-0 (5.6)

Let ye I’ denote an element of finite order and denote its centralizer in I" by
C(y). This group can be expressed as an extension

1-TI'"'nC(y)»C(y)»H,—>1 (5.7)

where H, is finite. We have the following additive description of the ideal Iz, where
(y) denotes the conjugacy class containing ye I

Theorem 5.8. Let & be the family of finite subgroups of I' and Iz the ideal previously
defined for X, a I'-complex satisfying 1.5. Then

( ~
P ( @ HYBC(y), Q)) * even

) Jeven

I; ~ { yeTors(I')
S ( @ HI(BC(), Q)) * odd
(¢2) J odd
\yeTors(F)

where Tors(I") is the set of elements in I of finite order.
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Proof. In [2], we obtained an additive decomposition, as y ranges over conjugacy
classes of elements in I'y(# ) = Tors(I'"),

KFIX)®Q = @K*BCH 'Y ®Q
(y)

which follows from a general decomposition

KEY)® Q= Py K*(Y/C(9) @ Q

for a finite group G acting on a finite complex Y, applied to G = I'/I"’ acting on
X/I'" (this result is due to Kuhn [14]). Note however that B(C(y) n I"') is of finite
type, hence

K"*(BCH) NI ®@Qx= P H/BCHNT), Q"

Jj even

K“BECO)nI)"@Q= @ HIBCH) AT, Q™ .

jodd
On the other hand, as H, is finite,
H*B(C()nT"), Q" = H*(BC(), Q) -
To complete the proof it suffices to observe that
dim KM X)® Q =dimIy + n(I"),

where n(I') is exactly the number of distinct conjugacy classes of elements in
Tors(I').

We obtain

Corollary 59. KF{(X)®Q is isomorphic to Rz(I')®Q if and only if
H*(BC(y), Q) = 0 for every element in I' of finite order.

Corollary 5.10. Let I' = G, x5z G,, an amalgamated product of finite groups. Then

() Ki(X)®Q=Rs(IN®Q

2 KHX)®@Q= @ H'(BCO) Q) = R(H)® Q/im(resy’ + res;r’)

ve T(gr)s(r)
(3) n(I') = n(Gy) + n(Gy) —n(H) + ), dimH'(BC(), Q)
yeT(o);')s(F)

Proof. We already knew (1); as for (2) this follows from the fact that every subgroup
of an amalgamated product of finite groups is virtually free (hence one-dimen-

sional) and 5.5 (3) is just a calculation using the Mayer-Vietoris sequence in
4.6). O

Among our examples of amalgamated products, only I' = S3 7,3 S3 will have
an element y of finite order with H'(BC(y), Q) # 0. We also have

Corollary 5.11.
Y, [x(BCH) + x(C)] = xH*(SWT)/T|, R) — xr(IST)]) -

(7)*(1)
yeTors(I')
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Proof. Brown [7] proved the formula
yBr)= 3% x(CH);
yeT(oyr)s(T )
applying 4.13 and 5.8 completes the proof. [

In the following section we will prove a local version of our results which allows
us to apply 5.8 to obtain a calculation for BI.

6. A local formula

If G is a finite group of composite order, then IG-adic completion can be difficult to
describe. In contrast, if G is a finite p-group, this completion coincides with the
better understood p-adic completion. To reduce completion to this situation, it is
technically useful to work p-locally. Let Z, denote the p-adic integers; we denote
p-adic K-theory by

K7 (X) = K*X;Z,),

1.e. ordinary K-theory with p-adic coefficients (see [1] for details). This is now
a p-local theory.

Using the same notation as before, with G = I'/I"’, let P = p-Sylow subgroup
of G. Then we have a map

K¥(X/T" x 6 EG)—225 KX(X/T' % EP) ,

which by transfer arguments in this p-local theory must be injective. On the other
hand, we have

K¥(X/T'xpEP) = K} (X/T") ® Z,
(p-adic completion). The above facts can be combined to yield

K3Br®Q,= (K} X/ ®Q,)\, (6.1)

where on the right we have the “stable” elements, another expression for the image
of

resg: KX/ ®Q,-» K¥X/T')®Q,.

This map fits into a commutative diagram

KEX/T)®Q, LN KEX/T)®Q,
l= | =
@K*((X/F/)@))Ca(g) ® Qp _¢_, @K*((X/Fr)@))cp(g) ® Qp
@ ®

the map ¢ is zero for g not conjugate to an element of P. If hgh™ ' € P for some he G,
then ¢ on the corresponding component is simply the inclusion

K*((X/T"))<® @ Q,c K*((X/I')®)"@ ® qQ,.
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This local approach is based on a proof appearing in [15]. Let Tors,(I") denote the
elements in I" of order a finite power of p. Identifying this image, we conclude:

Proposition 6.2.
KyBrNe®Q,= @ K*BCHnI)"®Q,
yeT(g;p(F)

From the commutative diagram

KeX/r'yeQ, —- RzN®Q,

! |

KX (XT')®Q, —> Rzn"'(P)®Q,
we obtain a map

(KF(X/T')® Q,)’ —(Rs(n"'(P)) ® Q,)°

and the term on the right is easily recognized as Rg,)(I') ® @Q,. We therefore
obtain a local version of the results in §5, namely

Theorem 6.3. There is a ring map
0 I35 ® Q,— KF(B) ® Q—" Ry (I') ® Q=0
with

,
@ < P Hi(BC(y), Q)) * even

() Jj even

Ige*'(p) ~ < yeTorsp(I')
S ( @ HI(BCK), Q)) * 0dd
) Jj odd
\yeTorsp(F)

We now apply 6.3 to calculate some examples.

Example 64. I' = S3*z,3S3.
Then _
K¥BINO®Q; 2K*(S")®Q; ® Q3[x]/x* —x -2,

x2—1,y> -1
K3Bry® Q, = Qz[x,J’]/

xy—x—y+1°
Note that local versions of 5.9 and 5.10 can be proved using 6.3, in particular we
have for I' = G, *5 G, (as in 5.9):
n,(I') = n,(Gy) + n,(G,) — n,(H) + Y. dimgH'(BC(y), Q) (6.5)
(y)
yeTorsp(I')

from which we conclude that there exists an element ye I’ of order 3 such that
HY(BC(y), @) + 0. Indeed if y = (123)€ S3, then (12)*(12) centralizes (123) and in
fact

Cy)=ZxZ/)3.
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Example 6.6. I' = SL;(Z)
For this group, we know that C(y) is rationally acyclic for ye Tors,(I'), p = 2, 3 (the
only torsion in this group). Hence K}(BI') @ Q, = Rz ,(I') ® Q,, p = 2, 3 and

a?—o—2,

K¥Bry® Q; = Qi[o, 1| p*—-p-2,
of —2(a+ B —2)

af -1, a3 —1
ﬁ%“z'—zab ﬂ%—2—2a2

KFBry® Q; = Q,[u«y, ay, 1, f21] o1 — Bi, %22 — P
(xlaz—al—a2+ 1, a1ﬂ2—2a1 _ﬂ2+2

BiBr—2B1 — 2P, +4, afy — 20, — 1+ 2.

These calculations should be compared to the calculation of H*(SL;(Z), Z) in
[22] and to the recent work of Tezuka and Yagita [23].

Example 6.7. I' = GL,_(Z), p an odd prime. As we have seen, I" has no elements
of order p%. Now if yeI" of order p, then its centralizer in I is isomorphic to the
group of units % in Z[{], where ( is a primitive p-th root of unity. This group is
well-known to be isomorphic to

)
Ciyy=Z/px(Z) ? ’'"xZ)2
and hence
)
KXBCH )t =Kx((S) 27).
Our exact sequence becomes
0_*197(1))@Qp"K;’k(BF)®Qp-_)_>R?_(P)(F)® QP_)O ’

where Rz ,)(I") is of rank Cl(p) + 1 and

Cl(p)
If(p)@ng[@)K*((S ) 2 ))®Qp] (BF )G®Qp
We obtain, for p = 5:

Y B;+ (Cl(p)) (2 T )) * even
dimg, K*(BGL,_,(2))® Q, = { =" s
S B+ ()@ T)) + odd
j odd
where B; = dimg H/(BGL,_,(Z), @), while
K3(BGL,(Z)) ® Q3 = Q3[w]/w* —w —2.

Example 6.8. Let I, denote the mapping class group of the n-punctured sphere.
Hodgkin [11] has obtained an additive description of K}(BI,) ® @, using the
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results in [2]. Using representations one can compute the ring structure in some
cases. Assume that n = p, an odd prime. Then there are no elements of order P
ny(I,) = 3(p + 1), and we have an exact sequence

(p—1)
0 —> R,f(l’)(rp) -> @ R(Z/p)Z/P"‘l N (Z)%(p_ 3) - 0 '
1

From Hodgkin’s rank calculations we infer that

K;‘;(Brp) ® Qp = Ré’(p)(rp) ® Qp .

For example, for p = 5, we obtain

> —3a—4
K¥(BI's) ® Qs = Qs[a, f] p?—38—4,
aff — 4o — 48 + 16 .

We have the following corolaries of 6.3

Corollary 6.9. K¥(BI')® Q, = Rz,,(I') ® Q, if and only if H*(BC(y), ®) = 0 for
all yeTors,(I").

Corollary 6.10. Let f:I'; » I'; be a homomorphism between two groups of the type

considered previously. If finduces an isomorphism K }(BI',) ® @, N K} (BI'1) ® Q,,
then

(1) Rg'.(p)(FZ) ® Qp = p* R,’if(p)(rl) ® Qp

O @ (@ﬁfwcm,a»)z P < @ﬁfwcm),az))

(v) jeven () J even
yeTorsy,(I'1) neTorsp(I2)

3 @D (@H"(BC(V),Q))Q @ (@HJ(BC(M),Q)>-

() Jodd (u) jodd
yeTorsp(I'y) ueTorsp(I'2)

Using the Atiyah—Hirzebruch spectral sequence, it is apparent that we may
replace the hypothesis in 6.10 with the assumption that f*:H*(BI,, Z,) -
H*(BI',, Z,) be an isomorphism, obtaining the same conclusions. Of particular
interest is

Corollary 6.11. If f:I'y > I, induces a Z,-cohomology isomorphism, then
Rzp(I'2) ® Q, = i« Rz (,)(I'1) ® Q, and in particular ny(I'y) = n,(I',).

Another interesting consequence is

Corollary 6.12. If f: T — H, H finite, induces an integral cohomology isomorphism,
then for every prime p,

(1) Iif(p)(r) ® Qp = Rf(p)(H) ® QP and

(2) H*(BC(y), @) = 0 for all yeTors,(I').

Note. There are many examples of the type of behaviour described in 6.12, at least
p-locally. For example, let H be any finite group of p-rank two. If 4,(H) denotes the



512 A. Adem

poset of p-elementary abelian subgroups of H, then its realization X = |4,(H)| is
a finite graph. H acts on X via conjugation; let I' = n,(X Xz EH). Note that
BI' ~ X xy EH and that n: I’ —» H induces a p-local cohomology equivalence (see
[8]). Hence I' is a virtually free group such that Rz, (I') ® Q, = Rz (,,(H) ® Q,
and H*(BC(y), Q) = 0 for all yeTors,(I').

7 Final Remarks

Let A BI' = Map(S!, BI') denote the free loop space on BI'. There is a homotopy
equivalence

ABI ~ [ BC(y) .
)

Now if ye I has infinite order, then there is a fibration

st - BC(y)

!
BC()/<v>
and hence if BC(y) is of finite type, x(BC(y)) = 0. We deduce that
1(ABl)= 3  xBCW) (7.1)

(82}

finite order

and so

1(ABl) = y(KF(X)® Q). (7.2)

This seems related to other results of this nature obtained for classifying spaces of
finite groups. These admit generalizations to the so-called Morava K-theories [12]
which one would expect to also be true for groups such as those considered in this
paper. Lee has recently studied aspects of this question [16].

From a purely algebraic perspective, we have

HH, (QI') = H,(ABI', Q)

(see [9, 13]) where the term on the left is Hochschild homology. Indeed, the ring
KF¥(X)® @ is contained (additively) in HH,(QI'). For our purposes (given the
periodicity in K-theory) we would prefer the compare K{(X) to a Z/2-periodic
object. Let HC,(QI") denote the cyclic homology of QI'; topologically it can be
defined as (see [9])

HC*(QI’)=H§1(ABF;(Q)=H*(E§1><§1ABF, Q). (7.3)
Using the bundle
S! 5 ABI' > ES'xg ABI',

we obtain a map

HC\p s (@) > HC,y s 3 5(QF)
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and periodic cyclic homology is defined as

PHC,(QI') = Jim HC, .,(QI') (7.4)

which is now a Z/2-periodic theory.
Let ye I of infinite order, and consider the fibration

S' = BC(y) > BC(y)/<y) - (7.5)

As before we obtain a Gysin sequence

= Hie 1(BCO). Q — Hes 1 (BICO)/ 1Y), @) > Hy_ 1 (BC(G)/ <)), @)
~ H(BC(LQ) >+

Our hypotheses on I' imply that H,(BC(y), ®) =0 for * > 0, hence we have
Z/2-periodic stable values for H,(B(C(y)/<{y)), Q). Following the notation in [9],
we denote these by T,(y, @Q).

Theorem 7.1.

PHC,@QI) = K¥X)® Q® ( P T Q)) :
yé"l!(};is(l")

Proof. Burghelea has shown [9] that

PHC,QI')= & H*(BC(V)/<?>,Q)@( S T*(%Q))

) (7)
veTors(I') y ¢ Tors(I')

where we define

@ Hi(X,Q) =0,

jeven

H, (X, Q) =
PHX,Q =*x=1.

jodd

However, if ye Tors(I") then <y) is finite, hence B{y) is rationally acyclic and
H,(B(C(y)/<{y>), Q) = H,(BC(y), Q). The result follows from the decomposition

K} (X)®Q= @ K*BCHnI")"®Q.
yET(ovr)s(F)
Noting (as we did before) that
K¥*BC(y) I ®@Q=H,(BC(», Q). O

What (if any) applications this result may have remains to be seen.

Finally, it is interesting to reformulate (6.3) from a homotopy-theoretic point of
view. It indicates a way of constructing classes in [ BI', BU," ] using representations
of finite subgroups.
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