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0. INTRODUCTION 

It is usually very complex to calculate the cohomology of a finite group 
G. To date the most significant results have been on the symmetric and 
alternating groups [N, MM, Ma, Mu, AMM], the general linear groups 
over a finite field [Ql], and the extra-special p-groups [Q2]. 

In the list above only the alternating groups and the GL,(ff 2) are simple. 
Indeed, among the simple groups only a very few, aside from those above 
have been understood. It is probable that away from the characteristic, p, 
H*(PSL,( F,,); Z/q) is available, but even this is not obvious, cspccially for 
q = 2. And certainly we currently have no information on most of the 
families of groups of Lie type, for example, G,(ff ,), E&IF ,), &([F,,), E,(ff ,), 
or any of the sporadic groups but M,, and J,. 

About 15 years ago Quillen introduced very powerful techniques that 
allowed for a much deeper understanding of group cohomology. However, 
it is also apparent that successful calculations over Z/p have only occurred 
when the group has a well-behaved lattice of p-elementary abelian sub- 
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groups. Formidable combinatorial problems arise in the general situation, 
as well as necessarily complicated multiplicative relations. For example, the 
general calculation of H*(GL,( [F,); Z/p) remains quite inaccessible, and 
there has been only marginal progress since Quillen’s landmark results. 

In this paper we calculate the mod 2 cohomology of the Mathieu Group 
Ml,> 1 of the 26 sporadic simple groups. It has order 95,040, and can be 
represented as a collineation group in PG(5,3) (the projective space of five 
dimensions over the field of three elements), leaving invariant a conligura- 
tion of 12 points. Of the finite simple groups not belonging to infinite 
families, only M,, (of order 7,920) and J, (of order 175,560, with elemen- 
tary abelian 2-Sylow subgroup) have been studied cohomologically 
[BC, Ch], both cases giving fairly immediate calculations. The group M,,, 
however, is considerably more complicated, being a rank 3 group with a 
2-Sylow subgroup of order 64. 

The methods used here combine the classical double coset formula of 
Cartan and Eilenberg [CE] with some of Quillen’s techniques. First we 
determined the poset space of elementary abelian 2-groups (as well as their 
normalizers) in M,, (Section 2 for definitions); next we found that in our 
list of isotropy subgroups, there were two non-isomorphic groups of 
order 192. The first centralizes one of the two non-conjugate involutions 
and one of the three conjugate classes of (Z/2)3’s in M,,. It is quite well 
understood. The second normalizes one of the four conjugate classes of 
Z/2 x L/2’s and the second of the three (Z/2)3’s. As far as we can determine 
it first occurs in the literature in [G] in a completely different context, 
realizing ML2 as a quotient of the amalgamated free product of the two 
groups of order 192 above over their intersection. This is obtained by 
considering automorphisms of trivalent graphs. In Section 5 we discuss this 
approach and, in fact, prove that at the prime p = 2, the cohomology of 
M,, is isomorphic to that of the amalgamated product (5.1). 

Even from our initial point of view, the double coset structure of W, W’, 
seemed to contain most of the cohomological information about M,,. This 
became more precise with: 

THEOREM 3.1. Let H be a 2-Sylow subgroup of M,,. There exist two 
non-isomorphic subgroups W and W’ of order 192 in M,, with H as their 
intersection such that 

H*(M,,; Z/2) ~im(res,W)* n im(res,W’)* 

in H*(H; Z/2). 

Remark. Using a result of [We] together with our explicit analysis of 
the poset space for M,, and the calculation of the cohomology groups of 
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all of its isotropy groups we obtain the Poincare series for H*(M,,; Z/2) 
as well. It is 

(1 + t3)2 
P(f)=(1-t2)(*-t3)(l-t4) 

though this does not reflect the actual ring structure very well. The 
cohomology ring turns out to be Cohen-Macaulay, i.e., freely and finitely 
generated over a polynomial subalgebra, in this case a polynomial algebra 
on generators in dimensions 4, 6, and 7 isomorphic to the Dickson algebra 
H*((z/2)3; z/2)-@‘2) c H*((Z/2)‘; Z/2). To reflect this we rewrite the 
Poincare series above as 

1 + t2 + 3t’ + t4 + 3t5 +4t6 + 2t’ + 4t8 + 3t’ + t’O + 3t” + t12 + t14 
(1 -t4)(1 -t”)(l -t’) 

Remark. The groups G, ( ‘Fy) of order q6(q2 - 1 )(q’ - 1) and ‘04( [Fy) of 
order q12(q2- l)(q6 - 1)(q8 + q4 + 1) with q a prime power and q- 3,5 
(mod 8) have the same f-Sylow subgroups as M,,. Consequently, we 
would expect the complete analysis that we give for H*(H; Z/2) to be 
useful in studying these groups as well. 

This work is the first application of the poset space to explicit 
cohomology calculations in rank larger than 2 (see [We] for a different 
aspect of this). Geometrically this means that we had to deal with a 
2-complex having a large number of cells. In Section 2 we provide a 
diagrammatic representation of the orbit space of this complex, including 
a complete list of isotropy groups. The intersection in H*(H; Z/2) is given 
in Section 4, where we calculate the cohomology rings H*(H; Z/2), 
H*( W; Z/2), and H*( W’; Z/2). We then determine the images of (resE)* 
and (resE’)*. Using the program MACAULAY we give the intersection as 
a ring over the Steenrod algebra .d(2) with 8 generators and 14 relations 
(Eqs. (4.15) and (4.16), Theorem 4.17, and Corollary (4.18)). 

It seems that the combination of techniques exploited here will yield 
equally tractable results for other sporadic simple groups; in particular we 
are currently analyzing Mzz and M,, in this way. (For M,, see the more 
detailed comments in Section 3.) 

We include two appendices containing the data on the subgroup 
structure of M,, required for our calculations. 

Much of the calculational work here was done on computers. Symbolic 
manipulation programs like Cayley are not powerful enough to handle a 
group the size of M,2. However, with efficient storage algorithms and good 
multiplication algorithms, modern machines can be effective for studying 
groups having orders less than approximately 10’. Indeed, in the case at 
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hand it is likely that most, if not all, of the results of Section 2 could have 
been obtained by hand, but it was so much easier to use the machines that 
there appeared to be no choice as to preferred methods. 

1. M,, AND ITS LATTICE OF 2-SYLOW SUBGROUPS 

The goal of this section is to provide the classical group-theoretic 
description of M,,, with particular attention to its lattice of 2-Sylow sub- 
groups. A presentation of the Mathieu group Ml1 of order 

is given in Hall’s book [H, p. 803; see also [S, p. 286). It has generators 

~1: (1, 2, 3)(4, 5, 6)(7, 8, 9) 

u2: (1, 4, 7)(2, 5, 8)(3, 6, 9) 

a: (234, 3, 7)(5, 6, 9, 8) 

b: (2, 5, 3, 9)(4, 8, 7, 6) 

x: (1, 10)(4, 5X6, 8)(7,9) 

Y: (1, 11)(4, 6)(5, 9)(7, 8) 

17: (1, 12)(4, 7)(5,6)(8, 9) 

and the first six elements generate M,, , the Mathieu group of order 
7,920 = 11 3 10 0 9 0 8 = 24 c 33 c 11 c 5. These are both simple sporadic groups 
and Benson and Carlson [BC] have recently determined the cohomology 
groups of M,, . However, M,, seems considerably harder. We have, to 
begin (see also [WI): 

THEOREM 1.1. The elements a, b generate a copy of the quaternion group 
2,. The elements x, y, 2 generate a copy of Y4 = Aut(2g) and the subgroup 

IV= (a, b, X, y, 2) c M,, is L& xT Aut(Z$), 

the semi-direct product (often called the holomorph of’ 2!8 in the literature). 

Proof: First, verifying that (a, 6) = d* is easy. Second, we have 

xax = (2, 5, 3, 9)(4, 8, 7, 6) = b, so xbx = a, 

yay = (2, 6, 3, 8)(9, 4, 5, 7) = ba, so yby=b-’ 

zbi=(2, 6, 3, 8)(7, 9,4, 5)=ab, SO ZCZZ=C', 
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so (x, y, z) normalizes L&. But, 

YZ = (1, 11, 12x4, 5, 8)(6, 7, 91 

also has order 3, while 

xyz = (1, 10, 11, 12)(4, 8, 7, 6) 

has order 4. It follows that (x, y, z) is a quotient of the group 

~={(A,BIA2=B3=(AB)4=1}. 

On the other hand, projection onto the subgroup Yd c g2 with generators 
1, 10, 11, 12 is a surjection, so (x, y, z) = Yd, as claimed. The result now 
follows. 1 

The index of W in M,, is 495, and Wn M,, is a group of order 3 0 16 
and has index 165 m M,, . W has order 192 and contains three 2-Sylow 
subgroups of M,,. In Section 2 we see that from the geometry of the poset 
space of elementary abelian subgroups, there arises a distinct subgroup W 
of order 192. In Section 3 we see that W, W’ play a strikingly dominant 
role in our cohomology calculations. 

We use the particular 2-Sylow subgroup H c WC M,,. It is generated by 
the three elements b, z, and zz in the list below. Moreover, the quotient by 
the commutator subgroup is (Z’/2)3, so there is a decomposition of H into 
eight cosets of Hi, with coset generators as follows 

Coset Element Representation 

1 id 
2 b = (2, 5, 3, 9X4, 8, 7, 6) 
3 zz = (1, 11)(4, 7)(6, 8)( 10, 12) 
4 zz 0 h = (1, 11)(2, 5, 3, 9)(4, 6, 7, 8)(10, 12) 
5 z = (1, 12)(4, 71~5, 6)(8, 9) 
6 zob= (1, 12)(2, 5, 4, 6, 3, 9, 7, 8) 
7 zczz=(l, 10, 12, 11)(5,8,9,6) 
8 z~zz~h=(l, 10, 12, 11)(2, 5, 7, 6, 3, 9,4, 8) 

To obtain the commutator subgroup explicitly we check that the com- 
mutator of z and zz is (1, 12)(5, 9)(6, 8)(10, ll), while the commutator of 
z and b is (2, 7, 3, 4)(5, 8, 9, 6). These two elements generate a group 
(Z/2 x Z/4) which has order 8 and is consequently the subgroup H’. 

There are two special maximal subgroups of H. The first is the subgroup 
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consisting of the first four cosets above. We denote it H,,. It can also be 
written as the semi-direct product 

9, x, (Z/2 x Z/2), 

where the action is by inner automorphism. It can be described as follows: 
in Ml,, let W be the centralizer of b’. Then 1 WI = 192, and it contains 
three conjugates of H. The intersection of any two is H,,. 

The second maximal subgroup consists of the first, third, fifth, and 
seventh cosets, and we denote it H,,. One can check that 

H,,= HnaHcc-‘, 

where M = (1, 6, 7)(2, 11, 5)(3, 10, 9)(4, 12, 8) so H,, is also a maximal sub- 
group which is given as the intersection of H with a conjugate subgroup in 
Ml,. 

THEOREM 1.2. The two subgroups H,, and H,, are the only maximal 
subgroups of H which are obtained as the intersections of H and a second 
2-Sylow subgroup of Al,,. Moreover, besides these two groups there are only 
two other non-commutative subgroups, both of order 16 and contained in 
H,,, which arise as the intersection of H with a second 2-Sylow subgroup in 

Ml*. 

H,l 
/ 

H’ G1 - L1 = (Z/2)3 

\/ 

THE INTERSECTIONS OF ORDER > 8 

Proof: This is a computer enumeration. We began by finding and 
storing generators for the 1485 cosets of H in M,,. Then a direct calcula- 
tion of the double cosets of H in M,* was generated. For details, see 
Appendix 1. 1 

481 ‘139/l-7 
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Remark. We enumerate the various intersections of the groups above: 

(1) H,,nH,,rD,xZ/2 

(2) G,nHHz,=G,nH,,%((2/2)3 

(3) L,nH,,=L,nH,,=(Z/2)*cH’. 

Using the computations in Appendix 1, we describe the conjugacy classes 
of elementary abelian 2-groups in M,,. 

THEOREM 1.3. In H there are five conjugacy classes of groups qf the form 
(Z/2)3. In M,2 these become exactly three conjugacy classes. Representatives 

for the conjugacy classes in H are the groups 

K = (a’, zz, [z, zz] ), 

L = (a*, [z, z-1, b[z, zz]), 

M= (a*, b[z, zz] a, zzoa), 

K, = (a’, [z, zz], z), 

L, = (a*, [z, zz], zz 0 a). 

In M12, L and L, are conjugate, as are K and K, . In particular each 
conjugacy class of maximal elementary 2-group in M,, is represented as a 
subgroup of H21. 

Proof: This is a direct enumeration, considerably aided by computer 
calculations. First, there are seven conjugacy classes of elements of order 2 
in H. They are given by the table 

Class Cycle form Number of conjugates 

a2 (2, 3N4, V(5,9)(6, 8) 1 
cz, =I (1, 12)(5, 9N6, 8)(10, 11) 2 

bCz> zzl (1, 12)(2, 9)(3, 5X4, 6X7, 8)(10, 11) 4 
ZZ (1, 11N4, 7X6, 8)(1(X 12) 4 
zzoa (1, 11)(2, 7)(3,4X5, 8)(6, 9)(10, 12) 4 
zzoboa (1, 11 N2, 8X3,6)(4, 5)(7,9X10, 12) 4 
z (1, 12~~4, 7)(5, 60,9) 8 

Next the centralizers (in H) of each of the elements above except the first 
were constructed. The centralizer of the last was a copy of (Z/2)3, while the 
centralizers of the remaining elements were all copies of Z/2 x D, with the 



COHOMOLOGYOF fi'f,, 97 

center generated by the element and a2 in all cases. Also, in each case the 
element generated the Z/2 split summand. Each of these groups has exactly 
two subgroups (.Z/2)3, and these were enumerated. The resulting table, of 
necessity, had all the conjugacy classes of such subgroups of H represented. 
The table follows: 

Representative Group Type 

b 0 [z, zz] 
b 0 [z, zz] 
ZZ 

zz 3 a 
2; 0 a 
zzoboa 
z 

(a’, zz, b 0 [z, zz] ) 
(a’, zz 0 boa, ha [z, zz]) 

(a’, [z, zz], zz) 
(a2, [z, zz], zzsa) 

(a’, zzoa, bo [z, zz] oa) 
(a2, zzo [z, zz], zzoboa) 

(a’, z, [z, zz] ) 

Here, the type symbol 4364 denotes the fact that of the seven non-identity 
elements of the group 3 have a cycle decomposition as a product of four 
transpositions in the embedding into <q2, while four have a cycle decom- 
position as a product of six transpositions. 

In the table above, the first and the sixth group are easily seen to be con- 
jugate in H, as are the second and the Fifth. It is also directly verified that 
these are the only possibilities. For example, in the fourth group all four of 
the elements of cycle type 6 are conjugate in H, while this is not true in the 
first group. Similarly, the seventh group is the centralizer of one of its 
elements in H, while the third is not. Thus the first statement in the 
theorem is verified. 

The element (1, 6, 12, 8)(5, 10, 9, 11)~: M,, conjugates the third group to 
the seventh, while the element (1, 12, 11)(4, 8, 5)(6, 9, ~)EM,, conjugates 
the fourth group above to the first. 1 

THEOREM 1.4. There are four conjugacy classes of 2-groups isomorphic to 
(Z/2)’ in Al,,. Representatives may be given as 

R= (a’,zz) type43 

R, = (zz, [z, zz]) type 43 

S= (a’, b[z, zz]) type4162 

T= (zz . b .a, b[z, zz] ) type 63. 

Proof: We first need to observe the result 
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LEMMA 1.5. Every subgroup G c H which is isomorphic to Z/2 x Z/2 is 
contained in a maximal elementarSp subgroup A’= (Z/2)3. 

Proof: If a* E G then G may be assumed to contain one of the other six 
elements in the table of conjugacy class representatives above. The second 
table gives an extremal group containing G. If a2 $ G then (G, a2) = (Z/2)3 
will serve. 1 

Continuing with the proof of the theorem, assume first that G contains 
an element M of type (2,2,2,2); then there is a /?EM,, so PC&’ =a2 and 
consequently fiGB-* c H. Similarly, if G just consists of the identity and 
three elements of type (2,2,2,2,2,2) then it is conjugate to a subgroup of 
the group A4 above. In the first case it is either conjugate to the subgroup 
(a*, [z, zz] ) in L, one of the three subgroups of K containing a*, or one 
of the three subgroups of A4 containing a2. 

In the case of the subgroup of M, note that the elements of type 
(2, 2, 2, 2, 2, 2) form a single orbit under the action of the automorphism 
group. Consequently, any two subgroups containing a* are conjugate. It is 
also easy, using the particular form of the action of X4 on the six elements 
of this type in M, to show that any two subgroups consisting only of 
elements of this type and the identity are conjugate. Similarly, if the group 
is conjugate to a subgroup of L which contains a2 and also contains an 
element of type (2, 2,2, ,2, 2, 2) then there is a 2-Sylow subgroup of cY, 
which fixes a*, but acts transitively on the four elements of this type in L. 
It follows again that any two subgroups of this type are conjugate. Finally, 
it is easy to see that the intersection of L and A4 is a subgroup of this type. 
So we have shown there are unique conjugacy classes of (Z/2)2 having the 
types of S and T. 

It remains to discuss those groups G containing three elements of type 
(2,2,2,2). The discussion above shows that we can assume that they are 
contained in L. The action of the group NM,*(L) on L decomposes these 
seven subgroups into two orbits, the first containing R and the second R,. 
To verify that, in fact, R and R, are not conjugate in M,,, we used a 
computer program to compare all the conjugacy classes of R to R,. 1 

The only remaining matter to discuss is the way in which these groups 
occur in the intersections with conjugates of H in M,,. This was checked 
on the computer, and the result was 

THEOREM 1.6. Only the conjugacy classes of T= (zz b . a, b[z, zz] ) 
among the groups isomorphic to (Z/2)” in H occur as the intersections, 
H n ~Hc’, of H with one of its conjugates in M,,. 

This completes our discussion of the lattice of subgroups of H in M,,. 
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2. THE POSET SPACE FOR M,, 

Let X be a partially ordered set (poset), and denote by 1x1 the simplicial 
complex associated to it. This is the simplicial complex whose vertices are 
the elements of X and whose simplices are the non-empty finite chains in X. 

Now if G is a finite group, Brown [B] and later Quillen [Q] introduced 
the study of the complexes associated to the posets 

s”,(G) = poset of non-identity p-subgroups of G 

.14,(G) = poset of non-identity p-elementary abelian subgroups of G. 

The following proposition summarizes the main properties of these poset 
spaces (see [Q] for details) 

PROPOSITION 2.1. Let G he a finite group of p-rank r. Then 

(a) S&(G) is a simplical complex of dimension r - 1, with an action of 
G induced by conjugation, 

(b) the natural inclusion &JG) 4 Yp(G) is a homotopy equivalence, 

(c) if G contains a non-trivial normal p-subgroup, then J$(G) is 
contractible, and 

Cd) 

&(s$(G), FJ E fi*(G, FJ. 1 

Remark. Here fig(X) denotes the equivariant Tate cohomology of X; 
see [B] for a description. Part (d) is a particular case of a result for 
discrete groups proved by Brown [B, p. 2931. 

ProojY The first three parts of Proposition 2.1 are explicit in [Q]. For 
part (d) we observe that if PC G is a p-Sylow subgroup, then the singular 
set of the P-action on s4,(G) is contractible [Q, 4.11. Denote this singular 
set by S,(I~JG)I). 

We show that the dual of the augmentation IF, -% %?*( IJ$[) induces an 
isomorphism in Tate cohomology. It fits into the short exact sequence 

o- FpL 2?*(Is3g)- @*(lJq)- 0. 

Consequently, it reduces to showing that fi,$(@*(l&~!))=O. By the usual 
transfer restriction argument it suffices to show that H:(@*(~A$‘,I)) =O for 
P a p-Sylow subgroup of G. Hence we can assume that G = P and prove 
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that ET. is an isomorphism. However, we have a commutative diagram with 
the vertical arrow an isomorphism: 

Using the fact that S,(~S$(G)~) is contractible and a spectral sequence 
argument we deduce that E* must also be an equivalence, thus completing 
the proof. 1 

It is now clear from Proposition 2.1 that for cohomological considera- 
tions, the poset space is potentially most useful for groups without normal 
p-subgroups, e.g., simple groups. It also indicates that H*(G) can be 
approached using equivariant cohomology. Consequently it is important to 
understand the singular set of the G-action on s$(G), as well as the 
isotropy subgroups, which in this case are the normalizers of the 
p-elementary abelian subgroups and the flags associated to them. For M,, 
we show that in fact two isotropy subgroups of order 192 completely 
control the cohomology at the prime 2. We refer to [We] for other aspects 
of this point of view. 

We now proceed to describe ,&(M,,). We start by providing a complete 
list of isotropy subgroups occurring for this two dimensional complex. 

PROPOSITION 2.2. The two conjugacy classes qf involutions 4’ and 6’ in 
M,, satisfy 

(a) the centralizer qf 4’ is W, the holomorph of JR and 

(b) the centralizer of 6’ is Z/2 x Y5. 

Proof (a) has already been discussed and is well known. (b) is a 
computer calculation, though it was known previously [W] that 
IN,,,(6i)l =240. First, the elements of the centralizer of (6’) were listed, 
where the specific element used was 

(1, 11)(2, 8)(3, 6)(4, 5)(7, 9)(10, 12)=x. 

Then the two elements 3, BE N,,,(6l) were found with M’ = p’ = (LX/J)’ = 1, 
so (a,b)=.r4,. Indeed, 1~=~‘=(2,3)(4,7)(5,9)(6,8), fl=(l, 10,4) 
(2, 7, 3)(5, 11, 12)(6, 8, 9) are suitable choices. Clearly, x $ 545, so 
1 (x, a, p) I = 120, and the resulting group is normal in NM,,( (x)) and is 
given as the central extension, 

2/2=(x)2 (x,a,jj)-.sd~. 
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But there is only one (non-trivial) central extension of zz2’ by Z/2 since 
iY’(& ; Z/2) = Z/2, and this is the binary icosahedral group, J&. However, 
the 2-Sylow subgroup of SX!~ is Z&, the quaternion group. Consequently, if 
we had the non-trivial extension we would have that x = y2 for some y, but 
an inspection of the elements of NM,2((~)) shows that this is impossible, 
so (x, CI, 8) = Z/2 x SLY. This implies the existence of the normal extension 

n/2 x cd5 “, N,+,,,( (x)) + n/2. 

Now, the number of extensions of 2/2x S& by Z/2 with a given action 
map, 

n/2 + Out( n/2 x sd~), 

is given by H2(Z/2; 2(2/2 x .&#)). The center of Z/2 x JY$‘~ is Z/2 = (x), so 
this cohomology group is Z/2. Also, Out(Z/2 x Ss,) = Z/2, so it follows that 
there are precisely four distinct extensions of the above type: the product 
Z/2 x Z/2 x JZ?~,, the group Z/2 x Y5, and two extensions in which x = y2. 
But the product has a subgroup (Z/2)4 which is not a subgroup of M,, and 
we have already seen that x is not a square in NM,,( (x)). The proposition 
follows. 1 

For later use we need the following 

COROLLARY 2.3. In NMlz( (x)) there are precisely five conjugacy classes 
of involutions: x, a, xa, a class t, which represents the involution (1, 2) E Y;, 
i.e., a class which extends ~2~ to Ys, and xt. The orbit of LX under conjugation 
in Z/2 x $ contains 15 elements, and these are the only elements in this 
group of type 4’. 

(This is clear except for the last statement. This was verified by checking 
that there were exactly 15 elements in N,,,,,>( (x)) of type 4’ by just 
inspecting the table of elements.) 

Next we study the normalizer of the first conjugacy class of groups 
(Z/2)2, those of type 42, i.e., conjugate to (a’, zz). We have 

THEOREM 2.4. The normalizer of the group (a’, zz) in M,,, NMn(4:), 
has order 192 but is not isomorphic to W. More exactly, the centralizer of 
(a2, zz), 2(4:), is given by, 

zMiz( (a’, 32 ))=(n/4~2/4)~,.2/2 

={a,d,fIa4=d4=f2=1;ad=da,faf=aP’,fdf=dP’}, 

and N,,,(4:) g’ IS men as the semi-direct product 

JL,,((a2, ~0) x, Y; 
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with the element of order 3 acting by T(a) = d, T(d) = (ad) ~ ‘, T(f) = a3df, 
while an element g of order 2 acts as g(f) = u’f, g(a) = a-- ‘, g(d) = ad. 

ProoJ: Set 

a = (2, 5, 3, 9)(4, 8, 7, 6), 

d= (1, 12, 11, 10)(4, 6, 7, 8), 

f = (1, 10)(4, 7)(5, 9)(11, 12), 

T= (4 4, 2)(3, 11, 7)(5, 10, 6)(& 9, 12), 

g= (1, 11)(2, 7)(3,4)(5, 8)(6, 9)(1(X 12). 

It is now systematic to verify all the claims above, except perhaps the claim 
that 

N&,(4:) # w. 

But note that a 2-Sylow subgroup of N,,,(4:) c W since f and g centralize 
a*. In particular, if N,,,(4:) has a center it must be (a*), but T does not 
centralize a, so N,,,(4:) h as a trivial center and cannot be isomorphic 
to w. 

The next normalizer that we identify is N,,,(4364). We found the next 
result to the somewhat unexpected. 

PROPOSITION 2.5. NMJ4:) = N,,,(4364). 

Proof We can check that fu= (1, 10)(2, 5)(3, 9)(4, 6)(7, 8)(11, 12). 
Consequently 

N,,,( (a2, ZZ)) contains the subgroup (a*, ZZ, fu), 

which has type 4364. Moreover, T(fu) = a3f = jh, and g(fa) = a’fa’ = fu. 
Also, dfad --I = zzfa, and af = a’fa. It follows that the group 
N,,,(4:) c N,,,(4364). On the other hand, .Z(4364) c 2(4:), and 
N,,,,2(4364)/Z,,,,12(4364) = Y4. The result follows. 1 

Remark. The normalizer of (a*, fa) is contained in W since this group 
has type 4162, so every element in NM,2( (a2, fu)) must also fix a*. From 
this it is easy to check that INM12( (a*, fa))l = 32. Indeed, the group is 
generated by d*, g, a, andf: It is the extra-special two group 

Z/2= (a’>; NM,,((a2,fa))- (U2)4, 

where the latter group has generators a, d2, g, and f: The extension data 
are given by [a, d*] = [d2, fJ = 1, [.f, g] = [g, d2] = [a, g] = [a,fl =a*. 
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Remark. Similarly, the group N,+,,,(4’66) c W, and its order is directly 
seen to be 96. Indeed, in checking we find that a representative group is 
(a2, fa, g) c W. Both d2 and a normalize this group, but they are 
independent in their action. Moreover, as we have seen, the normalizer 
contains an element of order 3. Consequently we have that the 2-Sylow 
subgroup of N,,,( (a*,fa, g)) is isomorphic to the group N,,,((a’,fa)) 
described above. Moreover, we have the group given as the normal 
extension 

(Z,‘2)3 “, N,,,(4’66) - d,. 

The next group to consider is N,,,(4:,) E NM,2( (zz, [z, ZZ] )). A com- 
puter check shows that this group has order 48 and is contained in W. In 
particular we have two ways of describing the resulting group: 

(Z/2)‘= (a2, zz, [z, zz]) 2 NM,J(zz, [z, zz]))- cV;, 

and 

(a’) =2/2> N,,,((zz, [z, zz]))- 9,. 

It remains to discuss the normalizer NM,,(63). Since N,,,(6’) = Z/2 x Y; 
with a class of type 6’ generating the Z/2 summand, it suffices to check the 
centralizer of an element of order 2 and type 6’ in the Y; piece. But this is 
given by Y; x2/2 since, as we saw above, all the elements of type 
4’ E N,,,,,*( (x)) are contained in cti5. Hence, the centralizer of 63 has order 
24 and is contained in N,,,(6l). From the last section Out,,,(63) = Z/3, so 
lNM,,(63)1 = 72 and the group is given as the product 

Next we analyze the flags in the 2-elementary subgroups of M,, 

DEFINITION 2.6. Let G be a group; then a p-elementary k-flag in G is a 
sequence of subgroups Gi c G and proper inclusions 

G,cG,c ... cGk 

with each Gi a p-elementary group. 
Two k-flags (G, c .., c Gk), (G’, c ..’ c CL) are conjugate if there is a 

g E G with gGig ’ = G:, i = 1,2, . . . . k. The isotropy group in G of the k-flag 
(G, c . . c G,) is the set of all g E G with gG,g-’ = Gi, i = 1, 2, . . . . k. Note 
that the isotropy group of a flag is the intersection of the normalizers of 
the Gi. 
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In this section we study only the a-elementary k-flags in M,,, so we 
suppress the modifiers M,* and 2-elementary in what follows. 

PROPOSITION 2.7. For flags of the form L/2 c (2/2)2 the conjugacy 
classes of the groups G, , Gz determine the conjugacy class of the flag. Conse- 
quently, we have the .following table: 

Type Isotropy group Order 

(4’, 4:) H 64 

(4’> 4A) D,xL/2=(a2,z,zz) 16 
(4’, 4162) &,,(4’62) 32 
(6’, 4162) &,,,(4162) 16 
(f-9, h3) % x w2)2 24 

(This is direct from the results of the last section.) 

PROPOSITION 2.8. For 2-flags of the form (L/2)2 c (Z/2)3 we also have 
that the conjugacy classes of the two groups G,, G2 determine the conjugacy 
class of the flag. Consequently we have the following table: 

Type Isotropy group Order 

(4:, 47) H 64 

(4:,? 47) NV,,(4:1) 48 
(4;, 4364) N,,,(4364) 192 
(4’62, 4364) %,,,(4162) 32 
(4’62, 4’66) K,,,(4’62) 32 
(63, 4’66) n/2 x d& 24 

There are two exceptional cases for 2-flags of type Z/2 c (Z/2)3. Specifi- 
cally we have 

THEOREM 2.9. There are two distinct conjugacy classes of 2-flags of 
the form (4l, 47). The first is represented by ((a2), (a2, zz, [z, zz])) 
and has isotropy group W, while the second is represented by 

((zz), <a2, zz, CA zz])) and has isotropy group z,,,,>( (a2, zz)) = H,,, of 
order 32. 

Proof That there are two distinct isotropy groups is clear since 
W= N,,,(4’) fixes a2 and makes a single orbit of the remaining terms. 
Then the isotropy group of ((zz), (a’, zz, [z, zz] )) certainly fixes both zz 
and a2 and consequently is contained in Z,,,( ( a2, zz ) ) = (Z/4)2 x T 212. 
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On the other hand, this centralizer, being contained in W, normalizes 
(a*, zz, cz, =I >. 

Finally, note that there is an element 0~ M,, with t3a28-’ =ZZ. Then 
8 WF’ n W= Z,M,,(a2, zz)), and it follows that there is a choice of 2-Sylow 
subgroup H’c W with H’n BH’O-’ also equal to this centralizer. Now, 
since Z,,,((a*, zz)) Z? H,,, it must be H,,,. 

Otherwise we have 

PROPOSITION 2.10. Except for the two cases above a 2-flag of the form 
Z/2 c (Z/2)3 is determined up to conjugacy by the conjugacy types of the 
groups G, , G2. Consequently, we have the table 

Type Isotropy group Order 

(4’, 4364) H 64 
(6’, 4364) Z/2 x P4 48 
(4l, 4’66) %,,(4’6? 96 
(6’, 4’66) L/2 x D, 16 

Finally we consider the 3-flags. From our previous discussion we have 
directly 

THEOREM 2.11. There are nine conjugacy classes of Z/2 c (Z/2)* c 
(h/2)3 in Ml,. There are two of type (4’, 4:, 4’) represented by ((a*), 
(a*, zz), (a*, zz, [z, zz])) with isotropy group H and ((zz), (a2, zz), 
(a’, zz, [z, zz] )) with isotropy group H,,,. The remaining classes are 
determined by the types of the subgroups, so we have the table 

Type Isotropy group Order 

(4l, 4:,, 4’) D, x Z/2 16 
(4’, 4;, 4364) H 64 
(4’, 4’6*, 4364) K,,,(4’62) 32 
(4’, 4’62, 4’66) %,,>(4l6*) 32 
(6’, 4’6*, 4364) L,,,(4’6*) 16 
(6’, 4’6*, 4166) &,,(4l6*) 16 
(6’, 63, 4’66) w2)3 8 

In Fig. 1 we give a schematic representation of the orbit space for 
~zz&‘~(M’~)~, with isotropy subgroups labeled as before. One can check that 
x( ILZ!~(M,~)~ ) = 3201, be necessarily congruent to one modulo 64 (the order 
of the 2-Sylow subgroup). Given the explicit nature of our data, it might 
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43 I I 

41 96 

4364 48 

4166 

FIG. 1. The quotient of the poset space under the action of M,, 

be of some interest to analyze the representations Hi((&(Mr2)1, E,), 
i= 1, 2, and verify whether they are projective [F,(M,,) modules as prior 
evidence suggests. (See [We] for more on this.) 

For readers interested in the purely computational aspects of deter- 
mining the subgroups of M,,, we refer to [BR], where a complete list of 
conjugacy classes of subgroups is given. 

3. THE MAIN RESULT 

There are two non-isomorphic groups of order 192 contained in M,,, as 
we have seen in the last section. The first, IV, centralizes an involution of 
type (2, 2,2,2) while the second, W’, is the normalizer of a subgroup 
(7/2)3 of type 4364 and of (a’, zz). We may assume W, W’ to be chosen 
so that Wn w’ = H, our usual 2-Sylow subgroup of Mr2. 

THEOREM 3.1. The cohomology ring H*(M12; Z/2) is the intersection of 
the images 

(resr)*: H*( W; Z/2) 4 H*(H; Z/2) 

(resr)*: H*( W’; Z/2) 4 H*(H; z/2). 
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Proof: A key theorem of Cartan and Eilenberg, the double coset 
formula [CE, p. 2591, identities H*(G; Z/p) as the set of stable elements 
in H*(G, ; Z/p), where G, is a p-Sylow subgroup and stable means the 
following: let g,, . . . . g, be double coset generators for G, so G = LI G, giG*’ 
and define G,,= G, n g,G, g,:‘. Then G,,= gl’G,,g, c G, and we have 
that any element E E im(reszD)* must satisfy 

(i,)* (res$,)* (g) = (res:,)* (a), (3.2) 

where i,: G, + G,, is conjugation by g,. Conversely, an element 
LX E H*(G,; Z/p) is stable if it satisfies (3.2) for each double coset repre- 
sentative g,. 

If G,c Lc G and gZ are double coset representatives for L so that 
G = LI Lg,L, then, first, H*(G; Z/p) -+ H*(L; Z/p) is an injection since L 
contains a copy of G,, and, second, an element in H*(L; Z/p) is in the 
image of H*(G; Z/p) if and only if it is stable with respect to the gj; see e.g., 
[CE, Proposition 9.4, p. 2591. That is, we need only check the subgroups 
L,= Ln giLgi ‘. 

In our case G = M,z and the group L will be W. Appendix 2 gives a com- 
puter generated table listing generators for the 10 non-trivial double cosets 
of W (there are 11 including W itself), as well as the intersection group W,, 
next to it. They are arranged so that elements on the same line are con- 
jugate by gi. Often, it turns out that the particular choice of generator 
given by the computer is inconvenient to our argument. Where that hap- 
pens we also list the conjugates (in W) of the group w,, which are obtained 
using different choices for g, to generate the same double coset. 

We now consider the elements coset by coset. The 1st element, 
(1, 2, 3)(4, 5, 6)(7, 8, 9), acts as the identity on W,,. Hence, i,, = id and 
(3.2) gives no restriction. The 2nd element, g, = (1, 3, 11, 2)(4, 6, 8, 7)(5, 9) 
(10, 12) has Wz2 = wK, conjugate in W to K,. But the element (1,4,2) 
(3, 11, 7)(5, 10,6)(8,9, 12)~ W’ takes K to a conjugate of K, in W’. It 
follows that on the intersection of the two restriction maps in Theorem 3.1, 
the stability condition generated by g, on K, is equivalent to a condition 
for K, where iRz represents the effect of an automorphism of K. But W is the 
normalizer of K; hence, on the image of H*( W, Z/2) in H*(H; L/2), the 
stability condition is automatically satisfied. 

The 3rd element has i,, = id, so there is no condition. The 4th generation 
gives G,, # GR4, but the 9th conjugate of G,, does equal Ggn. Hence, we can 
replace the generator by one which takes G,, to itself. This subgroup is 
( a2[z, I’z 1, z). In W’ it is conjugate to a subgroup of K, which in W is 
conjugate to either (a*, ZZ) or (ZZ, [z, ZZ] ). But W’ normalizes the 1st 
while the normalizer of the 2nd is contained in W. In either case, the 
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stability condition is automatically satisfied on the intersection in 
Theorem 3.1. 

The 5th and 6th generators both have I#‘,! conjugate to IV,,. Indeed, for 
the 5th the 10th conjugate of PVR, is Wp5, while for the 6th we use the 22nd 
conjugate. 

For g, the intersection is the dihedral group D,. Since i, takes the 
1st element to itself and it generates the 2-Sylow subgroup of the inter- 
section, there is no condition. 

For g, the story is the same as that for g,. For g,, note that W,, E d4, 
the alternating group on four letters. Now replace Wg9 by the 3rd 
conjugate, and note that i, on the 2-Sylow subgroup is the identity. Hence, 
there is no condition. 

Finally, we consider the 10th double coset generator. Here W,,” = H,,, 
and by replacing W,,0 by the 3rd conjugate, we see that conjugation by the 
new g,, gives an automorphism of H,,. In particular, it acts as an 
automorphism on the center of H,,, which is (a’, ZZ). But this means that 
g,, E IV’ since W’ is the normalizer of (a2, ZZ), and, once more, on the 
intersection of the two images, the stability condition is automatically 
satisfied. 

Thus we have shown that every element in the intersection is in the 
image of the cohomology groups H*(M,2; Z/2) in H*(H; Z/2). But, by 
naturality, 

im(reszi2)* c im(res,W)* n im(resz’)*, 

and Theorem 3.1 follows. 1 

Remark. There is a similar decomposition for M,,. There are two 
subgroups K, S in M,, with (K, S) = M,,, and Kn S contains a 2-Sylow 
subgroup. However, the analogue of Theorem 3.1 is not true in this case. 
The 2-Sylow subgroup H of M,, contains exactly two subgroups (L/2)4. 
Both are normal in H, but the normalizer of the first (in M,,) is a semi- 
direct product (Z/2)4x, L& = K while the normalizer for the second is a 
semi-direct product (Z/2)4 xg ,V; = S. See, e.g., [J] for further details. 

A computer check shows that there are elements v E S, w so that M,, = 
K v KvK u KwK. However, w $ S, and K n wKw ~ ’ = C&e is normalized by w 
so that the action restricts to one of the 2-Sylow subgroups ofde as a non- 
trivial outer automorphism. From this it follows that the containment 
H*(M,,; Z/2) c H*(S; Z/2) n H*(K; Z/2) is proper! A complete discussion 
will appear in a sequel. 

In Section 5 we see how our result relates the cohomology of M,2 to that 
of the amalgamated product W *H W’. 
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4. THE CALCULATION OF H*(M,,; Z/2) 

In this section we use the results in Section 3 to calculate H*(M12; Z/Z). 
The procedure is to first study the cohomology rings of the groups H,,, 

ff21, then use these to obtain the ring H*(H; Z/2), then use the double 
coset formula to obtain H*( W; Z/2), H*( W’; Z/2). The images of these 
groups are next explicitly calculated in H*(H; Z/2) and the generators of 
the low dimensional intersections are determined. 

The Group H,, 

We begin by calculating the cohomology of H,,. The result is 

THEOREM 4.1. There are no nilpotent elements in H*(H,,; Z/2). Indeed 
we have 

H*(H12; Z/2) g lF,[r, s] @ F,[a, b, cl/{ a2 + ac, b2 + bc} 

E F,Cr, s, cl(l, 0, 6, ab), 

where r, s are both two dimensional, while a, b, and c are one dimensional. 

Proof: The center of H,, is 2/2x Z/2 with generators b2 and 
m = [z, zz]. Thus it can be given as the central extension 

n/2 x n/2 + H,, -+ (Z/2)3 

and the K invariants are seen to be a2 + ac, b2 + bc, since we have that the 
generators for the quotient (Z/2)3 are the images of I= [z, b], z, and zz 
while [1, z] = I2 = b2, [zz, I] = 12, m = [z, zz], and z2 = zz2 = 1. 

Next, a routine calculation shows that in the resulting spectral sequence, 
E, = E,. From this the result above is immediate. 1 

From the above, an alternate description of H,, is as the semi-direct 
product 

n/4 x n/4 x T n/2, 

where the generators of the Z/4 x Z/4 are I, 1. z . zz, and z generates the 
twisting n/2. 

The Group H,, 

We now turn our attention to H,,, which can be described as the semi- 
direct product 

2s x, w2)*, 
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where the action is inner automorphism. An alternate description is as the 
central extension 

with x-invariant a2 + ah + b* + uc + bd!z H*((Z/2)4; Z/2) = F,[a, b, c, d]. 
This second description shows that H,, is an extra-special 2-group (see 

[Q2]), since the matrix l 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0 1 1 
is clearly non-singular mod 2. Consequently, the spectral sequence of the 
extension above collapses at E,, and Quillen’s structure theorem for the 
cohomology of such groups shows that 

THEOREM 4.2. 

H*(H2,; Z/2) = F,[rcJ[a, b, c, d]/(a2 + ub + b’ 

+ UC + bd, u*b + ub2 + u2c + UC’ + b*d + bd2). 

Here rc4 is the fourth power of the one dimensional generator on the fiber. 
However, the description above does not give us sufficient control, so we 
compare the calculation above with the description coming from the 
spectral sequence of the extension 

~2~ u H,, + (Z/2)2. 

Here, E, = H*((Z/2)2; Z/2)@ H*($,; Z/2) since the action of (Z/2)* on L& 
is via inner automorphisms, and these act trivially on passing to homology. 
A quick check using the previous calculation and the corresponding dimen- 
sion counts in the first four dimensions shows that here E, = E,. 

Thus we have an additive description of H*(H2,; Z/2) as 

F2[~‘,, c, d](l, a, b, u2, b2, u2b). 

That is to say, it is a free module over F,[K,, c, d] with six generators, as 
given above. However, the multiplicative structure is quite twisted. The 
relations are those given above. But note the particular consequences: 

u3 = (UC’ + u2d + ucd), 6’ = (bd2 + b2c + bed), 

a26 + b2u = u*c + UC’ + b’d + bd*. ub=u2+b2+uc+bd. 
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The Group H 

We calculate H*(H; Z/2) now, using the spectral sequence associated to 
the (split) extension sequence 

1 --f H,, -+ H + Z/2 -+ 1, 

which allows us to write H as a semi-direct product H,, xT Z/2. The E $ 
term is H’( Z/2); { Hj( H,, ; Z/2) ) ), where the coefficients Hj( H,, ; Z/2) are 
twisted by the action of Z/2 given as follows: a cf b, c t, d, uq fixed. 

These cohomology groups are described as follows. First Eij = 
H’(H,, ; 2/2)‘l*, and, for i > 0 let 8’= Hj(H,, ; Z/2)“j2/im( 1 + T*); then 
E; = I? u ei, where e is the non-trivial element in El0 = H ‘(Z/2; Z/2). 

Explicitly, & = [F,[k,, c, d]( 1, a, b, a’, b2) is an [F,[L/2]-submodule of 
H*(Hz,; Z/2). JZ splits as a direct sum of F,[Z/Z] submodules: 

JJ’ N E2C-44, G 4 0 F2Ck4, c, dl(a, b)CB F2[k4, c, dl(a2, b2). 

The quotient module is JV = H*(H,,; Z/2)/& N F,[k,, c, d](a*b). 

LEMMA 4.3. ~2”~~ =F2[k,,c+d,cd](l,a+b,a2+b2,ab,a2b+ab2). 

Proof We introduce the notation s, = b, t, =c+d, s2=ab, t,=cd. 
Clearly LF,[k,, c, d]“‘* = F,[k,, t,, t2]. Moreover, we can write 
IF,[k,, c, d] = [F,[k,, t,, t,](l, c), and from this we see that 1, a+ b, 
ac + bd, a* + b*, a2c + b2d generate &z/2 freely over lF,[k,, t,, t2]. Now, 
note that ah = (a + b)’ + (ac + bd). Also, 

a2c + b2d= (UC + bd)(a + b) + (c + d)(ab) 

= (a2 + b* + ab)(a + b) + (c + d)(ab) 

=s:+s,s,+t,s* 

=s:t,+s,t,+s,s,+t,s,. 1 

Now, consider the exact sequence of 5,[2/2]-modules 

1 + Af -+ H*(H,,; L/2) -+ JV + 1 

which induces a long exact sequence in cohomology 

1 - AfL12 - H*(H2,; Z/2)“i2 + uYs12 2 H’(Z12; A) 

- H’(Z/2; H*(H,,; Z/2)) ---+ . . . . 

481/139,W 
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The action of the generator T of Z/2 on the quotient module JV” is given 
bY 

T(a’b) = ab2 = a2b + a2c + ac2 + h2d+ hd2 

e a2b(mod A). 

Thus &“‘I2 N_ F2[kA, c + d, cd](a2h). Also 

h0(a2b) = a26 + ab2 = a2c + ac2 + b2d+ bd2, 

which is (1 + T)(a2c + UC’) and hence represents 0 in H’(Z/2; J@). It 
follows that the class 

L, = a2b + a2c + ac2 

is invariant under T in H3( H,, ; L/2) and maps onto the generator of ~9’“‘~~. 
We have proved the first part of 

THEOREM 4.4. H*(H,,; Z/2)“” is generated as an IF,-algebra by 
s, = a + b, t, = c + d, k,, s2 = ab, t, = cd, and L, = a2b + a2c + ac2. As a 
module over F2[t,, t,, t4], it is ,free on 1, s,, s:, s2, sls2, and L. Therefore, 
the following is a complete list qf relations for H*(H,, ; Z/2)“‘2: 

s;=s:t,+s1t2 
2 7 

s2=s1s2t1 +s,t; 

s~s2=tlL+s,t;+s2t2 

s,L=t1L+s,s,t,+s2t~+s2t, 

s,L=s,s2t~+s2tltz+s,t; 

L2=t,t2L+s,s,t;+s2t;t2+S2t;. 

ProoJ: The relations were found using MACSYMA by applying the 
relations between a, b, c, d already described in H*( H,, ; Z/2). The rest of 
the theorem follows from the discussion preceeding it. m 

We now turn to the calculation of H*(H, Z/2) itself. 

THEOREM 4.5. H*(H; Z/2) is generated by classes denoted e,, s,, t,, s2, 
t,, L,, and k,. We can, in fact, write H*(H; Z/2) as 

H*(H; WI = E2Ck4, t,, t,l(L sI, sf, s2, sls2, L)Oe,oF,Ce,, t,, k,l(l, L). 
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Note. Upon restricting to H*(H2,; Z/2), e, HO and the other classes 
restrict to the classes of names the same as those in the previous theorem. 

ProoJ The claim is really that the spectral sequence of the extension 

l+H,,+H+Z/2+1 

collapses. The quotient Z/2 splits, which detects the generator e, E ‘$ * was 
calculated in the previous theorem, and in noting the traces 

(1+ T)(a)=a+h=s, 

(1+ T)(c)=c+d=t, 

(1 +T)(a2+ac)=a2+h2+aC+hd=ab=s2, 

we find that H’(Z/2; H*(H2,; Z/2)) is generated by t,, L,, and k,. 
Indeed, it is isomorphic to e, u J&‘, where d E F,[k,, t,](l, L3), and 
H’(Z/2; H*(H,,; Z/2)) z ei, F,[k,, t2]( 1, L,). From this it follows that the 
only possible differentials are determined by their values on k,. But the 
class k4 is the Stiefel-Whitney class of a representation of H, and so it must 
be an infinite cycle. m 

Note that we have filtered relations s, e, E t, e, E s2 t, E 0. 

COROLLARY 4.6. The Poincare series for H*(H; Z/2) has the form 

Proof From the expression for H*( H; Z/2) in the theorem above we 
can write 

1 + t + 2t2 + 2t3 t+ t4 
P(H)=(l-t)(l-t2)(1-t4)+(1-t)(l-t2)(1-t4) 

but this is 

1+2t+2t2+2t3+t4 (1+t+t2+t3)(1+t) 1 
=- 

(1-t)(l-t2)(1-t4)=(1-t)(l-t2)(1-t4) (1-t)j’ ’ 

Recall that H*(H; Z/2) is generated by classes e,, s,, t,, s2, t,, L,, and 
k,, and we know the relations up to a multiple of e, (since we know the . 
restrrctrons to H*(H,, ; Z/2)): 
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(1) s,e, =s2e, =t,ei =0 

(2) s:=s;t,+s,l, 

(3) S;‘sls,t, +s,t: 
2 (4) s:s,=t,L+s,t,+s,t, (4.7) 

(5) s,L=t,L+s,s,t~+s,t:+s,t, 

(6) 
2 3 s,L==s,s,t, +s,t,t,+s,t, 

(7) L2=t,t,L+s,s,t:+s2t:tz+S2t;?. 

To detect any possible missing e,-factors we would like to compute the 
restriction map to H*(HZ2; Z/2). The following are straightforward: 

S] i-+0 

e, b-+b 

t,wb+c 

s2 b-9 a( b + c) 

1,HS 

k, w r2 + rs. 

Thus relations (l), (2), and (3) are valid. The only difficulty is that the 
restriction to H*(H,,; Z/2) of the class L is not at all clear. The class L is 
determined up to a multiple of e, by reszZ,(L) = a2b + a2c + ac2. 

To go further we consider the Gysin sequence for the extension 

I - H22---* H--+ Z/2- 1, 

- H*+‘x(H;Z/2) -!% H*(H; 2/2)-f% H*(H,,; Z/2) 

5 H*(H; Z/2)- . 

From the restrictions calculated above, we see that neither class (a) nor 
class (I) is in the image of restriction, so the transfer map is non-zero on 
each. In fact we must have 

tr*(a) = e, 

tr*(b) = f2 + ST + s1 t, 

since these are the only available classes in the kernel of cupping with s, 
in H*(H, L/2). Thus we also find that 

tr*(br) = e,(t, + 3: + sI ti) = t,e, 

tr*(as) = e, t,. 
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SO tr*(hr+as) =0 and br +as must be in the image of restriction. The 
class L must be involved, so that 

resH,,,(L) = br + us + x 

with x E span<b, c, ab + ac, s). 
We can dixcover more about the class x by considering the restriction to 

H *(Hzz; L/2) of the expression 

s;s,+t,L+s,t:+s,tz. 

We find that res&(sfs, + t, L + s2 t: + s2 t2) = (b + c)x + abc2 + uc3. Since 
this expression is a relation in H*(H*,; Z/2) the restriction to 
H*(IIJ~~; Z/2) must be a multiple of e,. Thus 

X=a(b+c)c+bY, 

and so res$,(L) = br + us + uc2 + ubc + by. But recall that L was only 
determined up to a multiple of e, so we may assume Y = 0 and 

reszZ,( L) = br + us + uc2 + ubc. 

We now find that relations (4), (5) and (6) of (4.7) are all valid as stated 
since their restrictions to H*( H,,; Z/2) are zero, but that 

resH,,,(L2+f1t2L+S,S2t~+SZf~f2+sZfi:) 

= b2r’ + ubs’ = b2(r2 + YS) + bs(as + br + uc2 + ubc) 

= res$,,(efk, + e,t,L), 

so we have shown 

THEOREM 4.8. H*(H; Z/2) = F,[e I, sI, tl, $2, t2, ~53, k41/2, where 9 is 
the set of relations 

s, e, = s2e, = t,e, = 0 

s:=s:t,+s,t, 

s:=s,s,t, +s,t; 

.+,=t,L+.~,t~+s,t, 

Note. We have squaring operations of the form Sq’(s,) =sIs2, 
Sq’(t2)=(e, +tl) t2,Sq1(L) = s,szt,+s,t~,Sq2(L)=e,k,+(t2+e~)L+ 
t:L + s2 t, t,, Sq’(k,) = 0, Sq’(k,) = (t2 + e; + t;) k,. 
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COROLLARY 4.9. The nilpotent elements of H*(H; Z/2) are all contained 
in the ideal (sl). 

More exactly, by using the relation D, * D, g Z& * 2!s, and the fact that 
H,, z JS * Z&, it is not hard to see that H*(H,, ; Z/2) actually has no 
nilpotents in its cohomology ring. Consequently, the same is true for 
H*(H; Z/2). 

The Group W 

We now turn to the group H*( W; Z/2). Since H,, is normal in W it 
follows from the double coset formula that H*( W; Z/2) = (res$*))’ 
(H*(HZI; Z/2)ys). Hence, we begin by obtaining H*(H,,; Z/2)%. 

Note that H*(H,,; Z/2)y> c H*(H,,; Z/2)“‘*, and by writing 
Z,=l+z+22, where r generates the normal Z/3 c Y;, we have that 
TZ, = C, T, so 

C,H*(H,,; Z/2)“‘2= H*(H2,; Z/2)5 

To obtain this algebra explicitly, note first that F2[k4, tl, t21z3 = 
LF,[k,, t2 + tf, t, t2]. Moreover 

~,Ckt, t,, t21= ~,Ckt, t,, f21Z3 (1, t,, t:,. 

Consequently, H *( H,, ; Z/2) ‘j2 is free over lF,[k,, t, + tf, t, t2] with the 
18 generators 

{ 1, t,, t:> x { 1, $1, $3 s*, 3132, L}. 

Let us calculate some traces: 

C(s,) = (a + b) + (a) + (6) = 0 

z(s:)=o 

C(s,) = (ab) + b(a + b) + (a + b) a = a2 + ab + b2 

=s*+s: 

a~,,~,)=~,~, 

Z(L) = (a26 + a2c + ac’) + (b2(a + b) + b2(c + d) + b(c + d)*) 

+((a+b)2a+(a+b)2d+(a+b)d2) 

= L + a3 + b3 + a*d+ b*c + ad2 + bc2 

=L+s;+s;t,+s,t; 

= L + SJ t* + s1 t;. 
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C(c) = (c + d) + (d) + (c) = 0 
Z(c’) = 0 

C(s,t,)=ac+bd=s,+s: 
C(s:t,) = (a + b)2 (c + d) + a*d+ b2c = a2c + b*d 

2 =sll, +s,s,+slt,+s,t, 

C(sl t:) = (a + b)(c + d)2 + ad’ + bc* = uc2 + bd2 

2 =s,t,+s,t,+szt, 
qs: t:, = s; + ST. 

Finally, we can use the invariance of s2 + ST, s,s2, and L + s, t, + s, tf to 
conclude that 

a*fJ=3m:h) 

C(s, t:, = E(.$ t:, 
C(s,s,t,)=C(s,s,t:)=O 

C(Lt,) = C(s, t, t, +si t;, = (t2 + r:, (s2 + s:, 
C(LtT) = C(s, t:t, + s, t;, = (f2 + t:, . C(s, t:,. 

Thus H*(H,,; Z/2)23 is free as a module over [F2[k4, t, + CT, t, t2] with the 
6 generators 

{l,s2fs2 ,,s,s,,L+s,tz+s,t:,s,t, +s~t,+s:t,,s:+s;‘}. 

It now follows that 

THEOREM 4.10. 

ff*(W;~P)=[F,[k‘l, t,+t:,t,t,](l,s,fs:,s,s,,L+s,t, 

+s,t:,s,t,+S1t,fS:f,,t:+t~) 

Oe,.[F,[e,,k,,t,+t:](l,L+s,t,+s,t:) 

with Poinca& series 

1 + t + 2t2 + 4t3 + 2t4 + t5 + t6 

(l-?)(l-f3)(1-t4) . 



118 ADEM, MAGINNIS, AND MILGRAM 

The Group W 

As was the case with W, we have that H*( W’; Z/2) = 
(res&-’ H*(Hz2; Z/2),y3, where now, the Z/3 action is given by the 
formulae of Theorem 2.4. The description of H*(Hz2; Z/2) given in 
Theorem 4.2 is not entirely precise for the identity of the elements r, s. 
However, in homology an element y of order 3 in the normalizer of H,, in 
IV’ acts on duals of Y, s by y(F) = S, y(s) = F+K (Here, the bars denote 
homology duals.) Actually, once we have choosen F then the action of y 
serves to determine S. Similarly in cohomology we can assume y(r) = s, 
y(s) = r +s. In dimension 1 the situation is clearer and we have y(a) = 
b+c, y(b)=a+b+c, and y(c)=c. Similarly, there is an element 8 of 
order 2 in the normalizer which acts by B(r)=r+s, 0(s)=By(r)= 
y20(r) = s, while in dimension 1 this same element acts by @a) = 
a + 6, B(b) = 6, d(c) = c: 

y:a++b+c B:a++a+b 

bt-+a+b+c r-r+8 

CHC fixes b, c, s. 

rw+st-+r+s 

TO calculate the C, invariants we begin studying the Z/2 invariants. Write 

H*(ff22; z/2) = F,[r, s, cl 0 F,Cr, s, ~](a, b)O F,[r, s, cl(ab) 

and denote by Jz’ the submodule, over F,(Z/2], 

AT’ = F2Cr, s, cl 0 F,Cr, s, cl(a, b). 

Then the quotient module .N = H*(H,,; 2/2)/A? is 

N N F,[r, s, c](ab). 

The exact sequence 

0 -+ .A + H*(Hz2; Z/2) -+ A’- -+ 0 

induces a long exact sequence in cohomology 

0 - dzf2 t (H*(H,,; 2/2))“‘2 - J$‘.=‘~ --% H’(Z/2; J&‘) ----+ . . . 

LEMMA 4.11. ~“‘2=IF2[c,s,r2+rs](l,b,as+br). 

THEOREM 4.12. Jy-z12 N F,[ c, s, r2 + rs](ab) and 6(ab) = 0. 
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Proof. Qab) = (a + b) b = ab + b* = ab + bc G ab mod 4. 6(ab) = 
(1+8)(ab)=b2=bc=(1+8)(ac)=O~H’(Z/2;~). 1 

THEOREM 4.13. 

H*(Hz2; Z/2)“/* = F,[c ,s, r2 + rs]( 1, b, as + br, ab + ac). 

Proof: Clear from the above. Note that (ab + ac) represents the term 
(ab) E M’,‘*. 1 

Noting that IF,[c, s, r* + rslzl = F,[c, r* + rs + s2, r*s + rs*] and 
LF,[c, s, f’ + rs] = F,[c, S, r* + rslz3 (1, S, s*), we need to consider the 
traces (1 + y + y2) on the 12 generators 

{1,s,.~*}~{1,b,as+br,ab4-ac}. 

We find, in particular, that 

(1 +y+y2)(ab+ac)=(ab+ac) 

(1 +y+y2)(as+br)=as+cs+br 

(1 + y + y*)(bs’) = br* + as2 + cs*, 

all the others being either 0 or repetitions of those above. Consequently, we 
have 

H*(H,,; 2/2)=l= IF,[c, r* + rs + s*, r*s + rs’]( 1, ab + UC, as 

+ cs + br, us2 + cs* + br2). 

It now follows that 

THEOREM 4.14. 

H*(W’;Z/2)=[F,[e,+t,, k,+t:, t,k,](l,s,, L+e,t, 

+t,1,+f,s2,t2L+e,k,+e,t~+t,t~+t,s2t2) 

0 52Ce, + t,, t2, k,+ t:l(s,, s:, sls2, $s2) 
with Poincari series 

1 + t + 2t2 + 3t3 + 2t4 + 3t5 + 2t6 + t7 + t8 

(l-t)(l-t4)(1-P) 

Proof As already stated, this follows from the double coset formula. 
Note that sf = .s:t, + s, t, and the terms on the right are already repre- 
sented. Similarly s, L = s:s2 + s, t, s2 and these terms are represented. Thus 
the second summand in the given expression is all multiples of s, in 
H*( H; Z/2). 
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The Group M,, 

From Theorems 4.10 and 4.14 we have the image of H*( W; Z/2), 
H*( W’; Z/2) in H*(H; Z/2). But the intersection of these two images is 
H*(M,,;Z/2). We now list the generators in H*(M,,; Z/2) through 
dimension 7: 

Name Generator Dimension 

s2 + s: 2 
Slf2 3 
(4 + $2) 21 + Sl t, 3 
L+(s,+t,+e,)t,+s,tf 3 
k, + t: + e: + t; 4 
(t2 + e: + t:) L + e,(k, + t: + ef t2) 5 
+t,t:+t;t,+s,t:+s:t,t,+t,s,t,+s,t~ 
(t2 + ef + t:) k, + (ef + tf) t: 6 
(tl + e,) t2k4 7 

(4.15) 

Note that since M,, is simple H’(M,,; Z/2) = 0. We also have the Steenrod 
operations, 

Sq’(a) =x, Sq2( c1) = cY2, 

Sq’(x) = 0, Sq2(x) = CYX, Sq3(x) = x2, 

Q’(Y) = x2, Sq2(y)=az=a(x+ y), Sq3(y)=y’, 

Sq’(z) = cl2, Sq2(z) = y, Sq3(2) = z2, 

%‘(P) = 0, Sq2(B) = 6, Q’(B) = 8, +4uu = if22 

Sq’(y) = z2, SqI(y) = 0, Q3(Y) = 0, Sq4( y ) = fly + z6 + CM, 

Sq’(6) = E, Sq2( 6) = 0, Sq3(S) = 0, Sq4(6) = P& 

Sq’(&) = 0, sq2(E) = 0, Sq3(&) = 0, Q4(E) = BE, 

and the following are a complete set of relations among the generators in 
(4.15): 

c((x + y + z) = 0, x3 = cc3x + afix + xs, 

xy=a3+x2+ y2, xz = a3 + y2, 

x’y = Lx32 + apz + y6 + lx&, yz=a3+x2, 

EX = fix2 + ci2x2, ay = z2y, 
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&y = a’6 + a2y2 + fix2 + py2, yy=ay2 

62 = y2 + a26 + a2x2 + /lx’ + bz2, xy = a4 + az’, 

z4 = YE + x4 + a”j? + z26, e2 = z3y + a2jG + a’fl 

+ z/h + z&y + az) 

+ /3’(a’ + xz + yz). 

This result was checked by the program MACAULAY, and we thank 
David Rusin for his help at this point. The generators in (4.15) above were 
analyzed by the program and shown to satisfy exactly this set of relations 
in H*(H, Z/2). Moreover, the program calculated the Poincart series for 
this algebra as 

4(t) = 
1 + t2 + 3t3 + t4 + 3P + 4t6 + 2t’ + 4t* + 3P + t’O + 3t” + t’2 + t’4 

(1 - t”)(l- t6)(1 -t’) 

(4.16) 

Then the program was used to show 

THEOREM 4.17. The algebra is Cohen-Macaulay. Specifically, it is 
,free and finitely generated as a module over the polynomial algebra 
F2[b4, fi6, &-/I. 

Using a result due to Webb [We], we now derive the Poincare series for 
H*(M,,; Z/2). Write G = M,,, X= Id2(M12)1 with the conjugation action. 
Then Webb’s result is 

Ij*(G; Z/2)0 @ I?*(G,; Z/2) z @ fi*(G,; L/2). 
6, I-cell 6, i-cell 
In X/G In x/c 
I odd I even 

Using our explicit knowledge of the equivariant structure of X, we obtain 
many cancellations, effectively simplifying the formula to yield 

This involves cancelling isotropy groups for vertices with edges and other 
isotropy groups of edges with isotropy groups of 2-simplexes. After that a 
few explicit calculations are required to show that the mod 2 cohomology 
rings of the isotropy groups of most of the remaining edges cancel off with 
those for remaining vertices and 2-simplices. 

From our previous calculations this can be used to determine the 
Poincare series for Ml,. After some simplification we obtain 
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COROLLARY 4.18. The PoincarP series jbr H*(M12; Z/2) is 

1 + 3t3 + 3t6 + t” (1 + t3)2 
P(t)=(l-rt’)(l-~4)(1-t~)=(l-r~)(l-t3)(1-t4)~ 

Then we compare the polynomials in Corollary 4.18 and (4.16). It is 
directly seen that they are identical, and from this the proof that 
H*(M12; Z/2) is the algebra above is complete. 

It would be useful to understand, in some sense, meanings for the 
generating classes and their relations, for example, in terms of characteristic 
classes for representations or images of classes from H*(Y12; Z/2), a topic 
we hope to consider in a sequel. 

5. TRIVALENT GRAPHS AND THE AMALGAMATED PRODUCT 

Given a situation such as that H, W, and W’, we can find a universal 
completion r= W *H W’ which makes the diagram below commute 

and such that any r’ which satisfies this (generated by W and WI) is a 
quotient of r. r is called the amalgamated product of W and W’ over H. 
It is well known (see [Se]) that an amalgamated product as above will act 
on a tree with finite isotropy and orbit space of the form 

WH W’. 

In [G], Goldschmidt analyzed the situation for actions on the cubic tree 
(the tree of valence 3) and obtained a classification of finite primitive 
amalgams of index (3, 3) (this refers to the indexes I[ W: H], [ W’ : HI). He 
shows that M,, is 1 of 15 such amalgams, necessarily a quotient of the 
universal one r. 

From this we deduce the existence of the extension 

(5.1) 

where r’ is a free group (it has cohomological dimension 1). Using the 
formula for Euler characteristics in [B], we have, on the one hand 

1 11 1 
w)=192+x-64= -E 
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(amalgamated product) and also 

x(r’) 
X(r) =m. 

Hence x(T’) = 95,040( - l/192) = -495 and it follows that f’ 2 *p6 Z, the 
free group on 496 generators. 

We can now state the main result of this section 

THEOREM 5.2. The map r+ M,, induces an isomorphism 

H*(M12; Z/2) -+ H*(r; Z/2). 

Proof: Consider the map 

res,W@ resr’: H*(w)@ H*( W’) + H*(H). 

Its kernel is clearly im(resz) n im(resz’) z H*(M,,) by Theorem 3.1. On 
the other hand, from [We] we have seen that H*(W)@ H*( W’) z 
H*(M,,)@EZ*(H). Hence resF@res,W’ is onto. On the other hand, from 
the action of f on a tree described previously, there is a well-known long 
exact sequence 

. . . -+ H’(T) -+ H’(W)@ H’( W’) + H’(H) + H’+ l(r) --f . . . 

As it comes from a Mayer-Vietoris sequence the same map as before arises, 
and hence the sequence splits and 

H*(W) 0 H*( W’) s H*(T)@ H*(H). 

Consequently, by rank considerations and the fact that the finite subgroups 
in r are mapped isomorphically into M,z under the projections, the proof 
is complete. m 

COROLLARY 5.3. H’(T’; Z/2) is an M,,-acyclic Z/2(M,,)-module of 
rank 496 which is not projective. 

Proof: The proof follows from considering the spectral sequence over 
Z/2 associated to (5.1) and the observation that 64 does not divide 496. 

I 

We do not know whether this representation has been documented in 
the literature, but it has radically different cohomological behavior at 
distinct primes dividing ) M,,l. For example, at p = 3 we have a sequence 

HPp2(M,2; H’(T’; Z/3)) --t H”(M,,; Z/3) 

-+ HP( w; Z/3) @ HP( W’; Z/3) 

and clearly the term on the left must be non-trivial. 
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APPENDIX 1 

The Double Coset Decomposition of M,, with Respect to H 

There were 44 double cosets in all. Twelve of them had only the Identity m common with H, M) they 
were ignored. Also, H, itself IS its own double co&, 60 this too wa8 ignored. The remainmg 31 generators 
and the intersections with H of their conjugates are tabulated below, together with the elements which go 
to the intersection elements a-hah-‘, where h is the double caset generator. 

THE INTERSECTIONS OF ORDER 2 
Coset generator a h and oha-’ I” intersection 
(1,2,3)(4,5,6)(7,8,9) (4,7)(5,8)(6,9)(10,11)-(4,7)(5,8)(6.9)(10,11) 
(l,3,10,2)(4,5,9,7) (1,l’J)(2,3)(6,8)(lLl2)-(l,10)(2,3)(6,8)(11,12) 
(1,4,5,9,12.10,2.8,3,6,7) (2.4)(3.7)(6,8)(10,11)-(1,10)(2.3)(6,8)(11,12). 
(1,8,5,9,6)(2,7,10,4,3) (1,10)(2,9)(3,5)(4,8)(6,7)(11,1’4 -(1,10)(2,9)(3,5)(4,8)(6,7)(11,12). 
(l,5,4,3,2,8,7,l2)(6,lO) (1,11)(2,4)(3,7)(5,6)(8,9)(10,12) -(1,10)(2,9)(3,5)(4,8)(6.7)(11,12). 
(1,7)(2,5,6,12,10,9,4,3) (1,12)(2,6)(3,8)(4,5)(7,9)(1O,ll) -(1,10)(2,9)(3,5)(4,8)(6,7)(11,12) 
(1,5,6,4)(2,8,3,10) (1,10)(2,5)(3,9)(4,6)(7,8)(11,12) -(1,10)(2,7)(3,4)(5,6)(8,9)(11,12). 
(1,7,8,3,12)(2,5,9,4,10) (1,11)(2,7)(3,4)(5.8)(6,9)(10,12) -(1,10)(2,7)(3,4)(5.6)(8,9)(11,12). 
(1,8,3)(2,7.5,4,12,10)(6,9) (1,12)(2,8)(3.6)(4,9)(5,7)(10,11) --(1,10)(2,7)(3,4)(5,6)(8,9)(11,12). 
(1,11,4,5,10,8,6,9,3,2.7) (1,10)(2,9)(3,5)(4,8)(6,7)(11,12) -.(1,12)(2,8)(3,6)(4,9)(5,7)(10,11) 
(1,11,6,4,7,10,5,12)(2,8,9.3) (1,11)(2,4)(3,7)(5,6)(8,9)(10,12) -(1,12)(2,8)(3,6)(4.9)(5.7)(10,11). 
(1,11,9,3,2,5)(4.8)(7,12,10) (1,12)(2.6)(3,8)(4,5)(7,9)(10,11) -(1,12)(2,8)(3,6)(4,9)(5.7)(10,11) 
(1,11,8,7,5,10,3,6)(4,9) (1.10)(4,7)(5,9)(11,12)-+(1,12)(4,7)(5,6)(6,9). 
(1,4,10,6,3,7,11,5,8.9.2) (2.3)(5,6)(8,9)(10,11)-(4.7)(5,8)(6,9)(10.11) 
(1.6)(2.10,9.3,7,11.5,4) (2.7)(3,4)(5,9)(10.11)--+(2,7)(3,4)(5,9)(10,11) 
(l.8)(2,lO)(5,9)(7,ll) (2,7)(3.4)(5,9)(10.11)-(2,7)(3,4)(5,9)(10,11) 
(1.6,11,5,2.10,4,9,12,8,3) (1,10)(2,3)(6,8)(11,12)-(1,12)(2.3)(5,8)(6,9). 
(1.7,9,12,5.3)(4.6,11)(8,10) (4.7)(5,8)(6,9)(10, ll)-(1,11)(4,7)(6,6)(10,12). 

THE INTERSECTIONS OF ORDER 4 

The first order 4 coset generator is (1,3)(2,12,10)(4,8,7,9,5,6) 

(1,12)(2.3)(4,7)(10,11) (1,10)(2,3)(6,8)(11,12) 
(1,12)(4.7)(5,6)(8,9) -(2.3)(4,‘1)(5.9)(6,8) 
(2,3)(5.6)(8,9)(10,11) (1.10)(4,7)(5,9)(11.12) 

The next coset generator IS (1,11,5,10,9)(2,8,4,6,i) 

(2.3)(4.7)(5,9)(6,8) (2,4)(3,7)(6,8)(10>11) 
(1.10)(4,7)(5.9)(11,12)-(1.12)(5,9)(6.8)(10.11) 
(1.10)(2,3)(6,8)(11.12) (1,12)(2,4)(3.7)(5.9) 

Thethird ccwt generatoris(1,11,7,8.5)(3,4.6,12,10) 

(1,1?)(5,9)(6.8)(lO.ll) (1.12)(4,7)(5.6)(8,9) 
(1.12)(2,4)(3,7)(5,9) -(2.3)(5.6)(8,9)(10.11) 
(2,4)(3,7)(6,8)(10,11) (1,12)(2,3)(4,7)(10,11) 

The fourth coset generator 1s (1,2,8,7.3,12,5,9,10.4)(6,11) 

(1,11)(2,4)(3,7)(5.6)(8,9)(10,12) (1,10)(2,5)(3,9)(4,6)(7,8)(11,12) 
(1, 10)(2,5)(3,9)(4,6)(7,8)(11,12)-(1,12)(2,8)(3.6)(4,9)(5,7)(lO.ll) 
(1,12)(2,6)(3,8)(4,5)(7,9)(10,11) (Lll)(2,7)(3,4)(5,8)(6,9)(10.12) 

The fifth coset generator IS (1,2,5,4,10,6.11,9,12.7,3) 

(1, 11)(2.7)(3.4)(5.8)(6.9)(10,12) (1.12)(2,8)(3,6)(4.9)(5,7)(10,11) 
(1, 10)(2.9)(3.5)(4.8)(6,7)(11,12)-(1,11)(2,7)(3,4)(5,8)(6,9)(10,12) 
(1,12)(2,6)(3,8)(4,5)(7.9)(10.11) (1.10)(2.5)(3.9)(4.6)(7,8)(11.12) 
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The sixth coset generator IS (1,2,7,3,10.9)(4.12,8,5,6,11) 

(1,11)(2,4)(3,7)(5,6)(8,9)(10,12) (1,11)(2,7)(3,4)(5.8)(6,9)(10,12) 
(1,10)(2.9)(3,5)(4,8)(6,7)(11.12)-(1,10)(2,5)(3,9)(4,6)(7,8)(11.12) 
(1,12)(2,8)(3,6)(4,9)(5,7)(10,11) (1.12)(2,8)(3,6)(4,Q)(5,7)(10,11) 

Theseventhcosetgenerator,s(1,4,6,11,8,3,12.7.5,2)(9,10) 

(1.12)(2,3)(4,7)(10,11) (1,12)(2.3)(5,8)(6.9) 
(1.12)(4.7)(5,6)(8,9) -(1,12)(2,3)(4,7)(10,11) 
(2.3)(5,6)(8.9)(10,11) (4,7)(5,8)(6,9)(10,11) 

THE INTERSECTIONS OF ORDER 8 
The first order 8 mset generator is (1,11,8,9,12,10,6,5)(2,7) 

(2.3)(4,7)(5,91(6,8) (2,4)(3,7)(6,8)(10,11) 
(1.12)(5.9)(6.8)(10,11) (1,12)(5,9)(6.8)(10,11) 
(1.12)(2,3)(4,7)(10,11) (1,12)(2,4)(3.7)(5,9) 
(1.12)(2,7)(3.4)(6,8) -(2,7)(3,4)(5.9)(10.11) 
(1,12)(2,4)(3.7)(5.9) (2,3)(4,7)(5x9)(6.8) 
(2.X3.4)(5,9)(10,11) (1,12)(2,7)(3,4)(6.8) 
(2.4)(3.7)(6,8)(10,11) (1,12)(2,3)(4,7)(10.11) 

The second coset generator IS (1,6.11.4,9.2,10,8)(3.12,7,5) 

(2,3)(4.7)(5.9)(6,8) (1,10)(4,7)(5,Q)(11,12) 
(1>11)(4,7)(6,8)(10,12) (1,10)(2,3)(6,8)(ll,W 
(1,11)(2,3)(5,9)(10,12) (2.3)(4.7)(5,9)(6,8) 
(1, 10)(2,5)(3,9)~4~6)~7,8)~11,~2)-(1,11)(2,8)(3,6)(4.5)(7,9)(10.12) 
(1.10)(2.9)(3,5)(4,8)(6.7)(11,12) (1,12)(2,8)(3,6)(4.9)(5,7)(10,11) 
(1,12)(2.5)(3,9)(4,8)(6,7)(10.11) (1.12)(2.6)(3,8)(4,5)(7.9)(10.11) 
(1.12)(2,9)(3,5)(4,6)(7,8)(10,11) (1,11)(2,6)(3,8)(4,9)(5.71(10,12) 

THE INTERSECTIONS OF ORDER 16 
The first order 16 mset generator IS (1,9,2,12,8.10,5,3)(6,11) 

(1, W(4,W,W%9) 
(1,12)(2,3)(5,8)(6,9) 
(1,lO. 12,11)(2.7.3,4)(5,9)(6,8) 
(1,10,12,11)(2.4.3.7) 
(1,11.12,10)(2.7.3.4) 
(1,11,12.10)(2,4,3.7)(5,9)(6.8) 
(4.7)(5.8)(6,9)(10.11) 
(2.3)(5.6)(8.9)(10.11) 

(1,10)(4,7)(5.9)(11,12) 
(1,11)(2,8)(3,6)(4,5)(7,9)(10,12) 
(1,12)(2,8)(3.6)(4,9)(5,7)(10.11) 
(1,12)(2,6)(3,8)(4,5)(7,9)(10,11) 
(1,11)(2,6)(3,8)(4.9)(5.7)(10.12) 
(1,10)(2.3)(6.8)(11,12) 
(2,3)(4,7)(5, Q)(6,8) 

-(1,12)(2,3)(4,7)(10,11) 
(1,11)(2,3)(5,9)(10.12) 
(1,10)(2,6,3,8)(4,9.7,5)(11.12) 
(2,6,3,8)(4,5,7>9) 
(2,8.3.6)(4,9.7.5) 
(1,10)(2,8,3,6)(4,5.7,9)(11,12) 
(1,11)(4.7)(6,8)(10.12) 
(1,12)(5,9)(6,8)(10.11) 
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The second cosel generator LS (1.9,3,12.5,2,11,7,10,4)(6,8) 

(2.3)(4,7)(5,9)(6,8) 
(2,8.3,6)(4,9,7,5) 
(2,6,3,8)(4.5,7,9) 
(1,111(4.71(6,81(]0.121 
(1,111(~,31(5,9)(10.12) 
(].11)(2,S)(3,6)(4,5)(7,9)(10,12) 
(1.11)(2,6)(3,8)(4,9)(5,7)(10,12) 
(1.10)(4.7)(5,9)(11,12) 
(1,1OP,3)(6,8)(11,1’4 
(1,10)(2,8,3,6)(4,5,7,9)(11,121 
(1,101(~,6,3,8)(4.9,~,51(11,12) 
(1,121(5,9~(6,8~(10.111 
(i.i2j~2,3j~4,~)(io,iij 
(1,12)(2,8)(3,6)(4,9)(5,7)(10,11) 
(1, 12)(2,6)(3,8)(4,5)(7,9)(10,111 

(1,12)(5,9)(6,8)(10,11) 
(1,11,12.101(5,6.9,8) 
(1,10,12,11)(5.8,9.6) 
(2,4)(3,71(6,81(10.1~1 
(1.1w&4)(3,71(5,91 
(1,11)(2,4)(3,7)(5,6)(&9)(l’J, 12) 
(1,10)(2,41(3,71(5,B1(6~91(11,1’4 

-(1,12)(2,3)(4,7)(10,11) 
(2,3)(4,71(5,91(6,8) 
(1,10,12x 11)(2.3)(4.7)(6,6,9,8) 
(I,]], 12,10)(2,3)(4.7)(5.8.9.6) 
(1,12)(2.7)(3,4)(6,8~ 
i2,7)ii,4)(i,9)(10.11) 
(1,10)(2,7)(3,41(5,6)(~~91(11~121 
(1,11)(2,7)(3.4)(5.8)(6,9)(10,12) 

THE INTERSECTIONS OF ORDER 32 

The first order 32 coset generator IS (1. 10,12)(4,6,9)(5.7,8) 

(2.7,3.4)(5.8.9,6) 
(2.3)(4,7)(5.9)(6,81 
(2.4,3.7)(5,6,9,8) 
(2,5.3,9)(4,8.7.6) 
(2,8.3,6)(4,9,7.51 
(2,9.3,5)(4,6.7.8) 
(2,6,3,6)(4.5.7.9) 
(1,11)(4,7)(6.8)(10.12) 
(1.11)(2,7)(3,4)(5,8)(6.9)(10.12) 
(1% 11)(2,W5.9)(10,12) 
(1,11)(2,4)(3,7)(5,6)(8,9)(10,12) 
(1.11)(2,5,3,9)(4,6.7,8)(10,12) 
(1. 11)(2,S)(3,6)(4,5)(7,9)(10.12) 
(1.11)~2.9,3.5~~4,8,7,6~(10,12~ 
(1.11)(2,6)13,81(4,9)(5,7)(10,12) 
(I, 10)(4,7)(5.9)(11,12) 
(1.10)(2.7)(3,4)(5.6)(8,9)(11,12)~ 
(1.10)(2,3)(6,6)(11,12) 
(1.10)(2.41(3,7)(5,8)(6,91(11,12) 
(1.101(2,51(3,9)(4,6)(7,81(11.121 
(1, 10)(2,8,3,6)(4.5.7,9)(11,12) 
(1,10)(2,9)(3.5)(4,8)(6,7)(11,12) 
(1,10)(2,6,3,8)(4,9.7.5)(11,12) 
(1.121(5,91(6,8)(10,111 
(1,121(2,7,3,41(5,~.9,8)(10,111 
(1,12)(2,3)(4.7)(10.11) 
(1.12)(2,4.3,7)(5,8.9.6)(10.11) 
(1.12)(2,5)(3.9)(4.6)(6.7)(10,11) 
(1.12~(2,S~(3.61(4,9)~5.7)(10.11~ 

(2,5.3,9)(4,8.7,6) 
(2,3)(4,7)(5,9)(6,6) 
(2,9,3,5)(4,6.7.8) 
(2.8,3,6)(4,9,7.5) 
(2,‘1,3,41(5,8,9,6) 
(‘A6,3,8)(4,5,7.9) 
(2,4,3.7)(5,6,9,81 
(1,10)(4,7)(5.9)(11,12) 
(1,]0)(2,5)(3,9)(4,61(7,~)(11,121 
(1.10)(2,3)(6,8)(11,12) 
(1,10)(2,9)(3,5)(4,8)(6.7)(11.12) 
(1,10)(2,8,3,6)(4,5,7.9)(11,12) 
(1,10)(2,7)(3.4)(5,6)(8,9)(11.12) 
(1,10)(2,6,3.8)(4,9.7.5)(11.12) 
(1>10)(2,4)(3,7~(5.8)(~.9)(11,121 

.(1.12)(5,9)(6,8)(10.11) 
(1.12)(2.5)(3,9)(4,8)(6,7)(10,11) 
(1,12)(2,3)(4,7)(10,~1) 
(1.12)(2.91(3,51(4,61(7~~)(10~11) 
(1,121(2,81(3,61(4,91(5~7)(10.11) 
(1,12)(2,7,3,4)(5,6.9,8)(10,11) 
(1.12)(2,6)(3,8)(4.5)(7.9~(10.11~ 
(1,12)(2,4,3,7)(5.8.9,6)(~0,11) 
(1.11)(4,71(6,8)(10.~21 
(1,11)(2,5,3,9)(4,6,7,8)(10,12) 
(1,11)(2.31(5,91(10,12~ 
(1,11)(2,9.3,5)(4,8,7.6)(10.12) 
~1.11~(2,~1(3.6~(4,5~(7.9~~10,12~ 
(1.11)(2,7)(3.4)(5.8)(6.9)(10.12) 
(1.11)(2,6)(3.6)(4.9)(5.7)(10.12) 
(1,11)(2,4)(3,7)(5.6)(8,9)(10,12) 
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The Iat coset generator 85 (1,6,7)(2,11,5)(3,10,9)(4,12.8) 

(2,7,3,4)(5,8.9,6) (1,11,12,10)(5,6,9,8) 
(2,3)(4.7)(5,9)(6,8) (1.12)(5.9)(6.8)(10, II) 
(2,4,3,7)(5.6,9,8) (1,10,12,11)(5.6.9.6) 
(1.11)(4,7)(6,8)(10,12) (1, WkW,4X6,8) 
(1,11)(2,7)(3,4)(5,8)(6,9)(10,12) (LlO)(2,7)(3,4)(5,6)(8,9)(11,12) 
(1,11)(2,W5.9)(10,12) (2, '1)(3.4)(5,9)(10,11) 
(1.11)(2.4)(3,'1)(5,6)(8,9)(10,12) (1,11)(2,7)(3,4)(5,8)(6,9)(10,12) 
(1.10)(4,7)(5,9)(11,12) (2.4)(3,7)(6,6)(10,11) 
(1,10)(2,7)(3,4)(5,6)(6,9)(11,l2) (1,11)(2,4)(3.7)(5,6)(8,9)(10.1'4 
(1,10)(2,3)(6,8)(11,12) (1,12)(2,4)(3,7)(5,9) 
(1,10)(2.4)(3,7)(5,8)(6,9)(11,12) (l.lO)(2,4)(3,7)(5,8)(6.9)(11,12) 
(1,12)(5,9)(6,8)(10.11) (1.12@.3M7)(10,11) 
(1,12)(2,7.3,4)(5,6,9,8)(10,11) (1,10,12,11)(2,3)(4.7)(5,6,9.8) 
(1,12)(2,3)(4.7)(10,11) Ga3)(4,7)(5,9)(%8) 
(1.12)(2,4,3.7)(5,8,9,6)(10,11) (1,11,12,10)(2.3)(4,7)(5,6.9,6) 
(1,12)(4,7)(5,6)(8,9) -(1,11)(4.7)(6,8)(10,121 
(1,12)(2,7)(3.4)(6.8) (1, W(4,7)(5,6)(8,9) 
(1,12)(2.3)(5,8)(6.9) (1,10)(4,7)(5,9)(11.12) 
(1,12)(2,4)(3.7)(5,9) (4,7)(5,6)(6,9)(10,11) 
(1.10.12.11)(5,6,9,6) (1, 11,12.10)(2,7,3,4) 
(1.10.12,11)(2.7,3.4)(5,9)(6,8) (1,12)(2.7,3.4)(5,6.9.8)(10,11) 
(1.10,12,11)(2,3)(4,7)(5,6,9.8) (i.io,12,11)(2,7,3.4)(5.9)(6.8) 
(1,10,12,11)(2,4,3,7) (2.7,3.4)(5,8,9.6) 
(1,11,12.10)(5.6,9,8) (l.lO,12.11)(2,4.3,7) 
(1,11,12,10)(2.7,3,4) (2.4.3.7)(5,6,9.8) 
(1.11.12,10)(2.3)(4,7)(5,8,9,6) (1,11,12,10)(2,4,3,7)(5,9)(6.8) 
(1,ll. 12,10)(2.4.3,7)(5,9)(6.8) (1,12)(2,4,3.7)(5.8,9,6)(10.11) 
(4,7)(5.8)(6,9)(10,11) (1,10)(2,3)(6,8)(11,12) 
(2,7)(3.4)(5,9)(10,11) (2,3)(5,6)(6,9)(10,11) 
(2,3)(5,6)(8,9)(10,11) (1,11)(2,3)(5.9)(10,12) 
(2 4)(LV6,8)(1’&11) (1,1W.3U,8)(6,9) 

The detads on the structure of the mtersect~ons follow. 
Class coqugatmg the Sylou I-subgroup (1,6,7)(2,11,5)(3,10,9)(4.12.8). resultmg mtersec~,on Hz2 
Class con,ugatmg the S]low 2.subgroup (1,9,3.12,5.2.11, 7,10,4)(6,8), mters~ct,on wth the commu~ 

tator subgroup 1s thr marlmal elemenkry subgroup 212 x Z/2 with generators 

1, (1.12)(5.9)(6.8)(10,11). (1,12)(2.3)(4,7)(10,11), (2,3)(4,7)(5.9)(6,6) 

In fact this IS the mtersectmn wth lhe commutakx subgroup of all the remammg conjugates The mtersection 
with the third coset is 

(1,11)(2.7)(3,4)(5,6)(6.9)(10,12) 

(1.10)(2.7)(3.4)(5,6)(S,9)(11,12) 

(1.11)(2,4)(3,7)(5,6)(8,9)(10.12) 

(1,10)(2,4)(3,7)(5,8)(6,9)(11,12) 

The intersect,on wth the fifth cosc1 E 

(1.12)(2.7)(3.4)(6,8) 

481!139'1-9 
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Finally, the mtersection with the seventh coset IS 

(1,11,12.10)(5,6,9,8) 

(1,~0.12,11)(5,8,9,6) 

(1s11,12, 10)(2,3)(4‘7)(5,8,9,6) 

(1,10,12,11)(2,3)(4,7)(5,6,9,8). 

This IS the first of the two subgroups of order 16. It is also obtained by intersecting with the canJugate by 
(1,4,10,6,5,2,11.8,9,3)(7,12) 

The second subgroup of order 16 is obtamed by intersecting with the conjugate by (1,9,11,7,8,10,4,6)- 
(5.12). The intersection with the first and third casets are the same as those for the group above However. 
for the lifth coset we have that the intersection is 

(1,12)(4,7)(5,6)(8,9) 

(2,3)(5,6)(8,9)(~0,11) 
(4,7)(5.8)(6, WIO, 11) 

(1, W&3)(5.8)(6,9), 

while the intersection with the seventh coset IS 

(~.11.12,10)(2,4.3,7)(5,9)(6,8) 

(1.10,12,11)(2,7,3,4)(5,9)(6,8), 

and these are manifestly different from the mtersections for the first group above This same group 1s also 
obtained by intersecting wth the conjugate by (1,4,9,11,8,12,7,5)(6,10) 

The remaining intersections that we consfder are all elementary Z-groups (Z/2)3 There are two nhrch 
occur as the intersection of Hz with a conjugate Both contain the mtersection with the commutator subgroup 
above, and both have 4 elements m common wth the fifth coset. These two intersections are 

(2,4)(3.7)(6,8)(10,11) 

(1.12)(2,4)(3,7)(5,9) 

(‘LX3,4K5,9)(1’&~1) 
(1>12)(2,7)(3.4)(6.8) 

obtamed by conjugatmg with 

(1,11,8,9,12.10,6,5)(2,7). (1.11,8,12,10,6)(3,4,7)(5,9), (1,2.8,7.6.4,9,10)(3,5,11,12), 

and (1,3,8,11,12,2,5,7,6.10)(4.9). In the other cake the intersection wth the fifth coset 1s 

(‘&3)(5,6K8.W1’A 11) 

(1, I?(4 7)(5,6X6,9) 

(4.7)(5,8)(6,9)(10,11) 

(1, WP,W,Wi9). 
This case occurs when we conjugate by any one of 

(1,11.9.7)(2.6,3.8,4.12.10.5), 
(1.11.6,7,9,4,5,2)(3.12,10.6). 
(1.7.2,11.12.4,3,10)(5,8), 
(1,8.3,5.2,9.7,10)(4,11,12.6) 
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The Double Coset Decomposition of M,, with Respect to W 

There are 11 double cosets 01 M,z with respect to W. The 10 non-trivid onea are described below 
Double coset generator # 1: (1,2,3)(4,5.6)(7.8,9). 1 n e section size is 6 The intersection group and t I 
con,ugate are 

r: 5 6)(7 9 6)(10 12 11) 
(4:7j(5,8j(i,9)(ld,li) 

;:.5.6)(7,9,6)(10,12 11) 
(4.7)(5,8)(6,9)(10, ii) 

(4,6,5)(7.8,9)(10,11,12) (4,6,5)(7,8,9)(10,11,12) 
(4,8)(5,9)(6,7)(10,12) (4,8)(5,9)(6,7)(10,12) 
(4,9)(5,7)(6.8)(11,12) (4,9)(5,7)(6,8)(11.12) 

Double c-et generator # 2. (1,3,11,2)(4,6,8,7)(5,9)(10,12). Intersection size is 8 The intersectmn group 
and con,ugate are 

;;1.11)(4,7)(6.8)(10.12) ;~.3)(4.6)(7,6)(10.12) 
(2.3)(%7)(5.9)(6,8) (1,11)(4,6)(5.9)(7,8) 
(1.11)(2.3)(5.9)(10.12) (1.11)(2,3)(5,9)(10,12) 
(4,8)(5,9)(6,7)(10,12) (4.8)(5,9)(6,7)(10.12) 
(1,11)(4,6)(5.9)(7.8) (2.3)(4.7)(5,9)(6.8) 
(2,3)(4,6)(7,8)(10,12) (1.11)(4,7)(6,8)(10.12) 
(1,11)(*,3)(4,8)(6,7) (1,11)(2,3)(4,8)(6,i) 

Double coset generator # 3 (1,6,3,9)(2,6.7,11)(4,5)(10,12) lntersect~on s,ze ,s 2 The ,,,tersect,on group 
and conjugate are 

Double cost generator # 4. (1,5)(2.6,3.10,11,4,9,8) lntersect~on size 1s 4 The intcrsectmn group and 
con,"gate are 

td 
(1.10)(4,5)(6.8)(7.9) 
(1,10)(2,3)(6.8)(11,12) 
(2,3)(4.5)(7.9)(11.12) 

;L)(2,9)(3.5)(4.7) 
(2.9)(3,5)(6.8)(10.12) 
(1.11)(4,7)(6.8)(10.12) 

There are 12 cqugates of this group ,n W. 

Conjugate number 1 Coqugate number 2 COnJUg.de number 3 COnJU'&ate number 4 

f;l.11)(2.9)(3.5)(4,7) ;~,11)(2.5)(3.9)(6,8) &)(3.6)(4,7)(11.12) ;;,4)(3,7)(6,6)(10.11) 
(2.9)(3.5)(6,8)(10,12) (2.5)(3,9)(4.7)(10,12) (1,10)(2.8)(3,6)(5.9) (1.12)(2.4)(3.7)(5.9) 
(1.11)(4,7)(6,6)(10,12) (1,11)(4.7)(6,8)(10,12) (1.10)(4.7)(5,9)(11,12) (1,12)(5.9)(6.8)(10,11) 

COnJUgate n"mb.Zr 5 ConJugate number 6 

;~.6)(3.8)(5.9)(11.12) ;~.7)(3.4)(5,9)(10.11) 
(1.10)(2.6)(3,6)(4,7) (1.12)(2.7)(3,4)(6,6) 
(1.10)(4,7)(5,9)(11,12) (1,12)(5.9)(6,8)(10,11) 

Conjugate number 7 Conjugate number 8 

;~,9)(5.7)(6,8)(11.12) ;~,7)(5.8)(6.9)(10.11) 
(1,10)(2,3)(4,9)(5.7) (1.1*)(*.3)(5.8)(6.9) 
(1.10)(2,3)(6,6)(11.12) (1.12)(2,3)(4,7)(10,11) 

Conjugate number 9 ConJugate number 10 

f~.3)(4,5)(i.9)(11.12) ;; 3)(5,6)(6.9)(10.11) 
(1.10)(4.5)(6.B)(i.S) (1: 12)(4.7)(5,6)(8.9) 
(1.10)(2.3)(6.8)(11,12) (1,12)(2.3)(4,7)(10.11) 

Conjugate number 11 ConJugate number 12 
id 
(1.11)(4.6)(5.9)(i.g) ;: R)[5.9~(6 i)(lO.l2~ 
(2.3)(4 G)(i.fiJ(ll' 12: (l.ll)ii 31~,1 bi(C.71 
(1.11)(2 3)(5.!~1(10 l?l il.Il),Z 3i~i.!li(lO.l2) 
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Double coset generator # 5. (1,4,6,7,10,12,3,9,11,2,8). Intersection size is 2 The intersection group and 
con,ugate are 

;~,3)(5.6)(8,9)(10.11) ;~,3)(4,5)(7,9)(11,12) 

There are 24 conjugates of this group m W 

Conjugate number 1 Conjugate number 2 Conjugate number 3 Conlugate number 4 

;~,3)(4,5)(7,9)(lLl2) ;:,6)(3,8)(5,9)(11,12) &0)(2,3)(4,9)(5,7) ;~,11)(2,3)(4,6)(6,7) 

Conjugate number 5 COnJUgate number 6 Conjugate number 7 Conjugate number 8 

f:.3)(4,6)(7,8)(10,12) &0)(2,8)(3,6)(5,9) ;~,11)(2,5)(3.9)(6,8) ;:,5)(3,9)(4,7)(10,12) 

Conjugate number 9 Conjugate number 10 Conjugate number 11 Conjugate number 12 

f&1)(4,6)(5.9)(7,8) ;:,3)(5,6)(8,9)(10,11) &)(5.9)(6,7)(10.12) ;;, 12)(2,3)(5.8)(6.9) 

‘hJ”gate number 13 CO”J”g& number 14 

;~,9~(3,5K6.*)(10,12) ;;‘, 11)(2,9)(3.5)(4,7) 

CO”J”g& number 17 COnJUg?& number 18 
td 

(1,12)(2.7)(3,4)(6.8) ;:,9)(5.7)(6,*)(11,12) 

ConJugate number 21 Conjugate number 22 
rd 
(1,12)(4,7)(5,6)(R,9) ;;.12)(2 4)(3,7)(5,9) 

Conjugate number 15 

;:,7)(3,4)(5,9)(10.11) 

Conjugate number 19 
id 
(4,7)(5.8)(6,9)(10,11) 

Conjugate number 23 
id 
(2,8)(3.6)(4.7)(11.12) 

Conjugate number 1G 

it. 10)(2.6)(3,8)(4,V 

Conjugate number 20 
td 
(1,10)(4,5)(6,8)(7.9) 

Conjugate number 24 
ad 
(2,4)(3.7)(6.R)(l0.11) 

Double co& generator # 6 (1.4.7,9.5,3,11,8)(2,6,12,10) lntersectmn s,ze is 2 The ~nter~ectmn group 
and CO”J”g& are 

;~.12)(2,4)(3,7)(5,9) ;:,10)(4,5)(6,8)(7.9) 

Double cost generator # 7 (1,4.9,7,5, 12,2,6)(3, 10, 11,8). lntersectmn s,ze 1s 6 The ~nt~r~cctm” group 
and CO”J”g& are 

id id 
(1>12)(2.4)(3.7)(5.9) (1,12)(4,7)(5.6)(8.9) 
(4,8)(5,9)(6.7)(10,12) (1,11)(2,9)(3,5)(4,7) 
(1.1OP,8K3,6K5,9) (2.8)(3,6)(4,7)0L 12) 
(1.10.12)(2.8.4)(3.6,7) (1.12.11)(2.9,8)(3.5.6) 
(1, 12,10)(2,4,8)(3,7,6) (1,11,12)(2,8,9)(3,6,5) 

Double eDSet generator # 8, (1,8)(2,9,5, 10)(3,12)(4,7,6,11). Intersectwx size is 4 The mterxctmn group 
and CO”J”g& are 

;;, 11)(2.3)(5,9)(10,12) ;:,9)(3.5)(6.8)(10.12) 
(4.8)(5 9)(6.7)(10.12) (1,11)(2.9)(3,5)(4.7) 
(I. 11H2.3K4.8K6.7) (1.11)(4,7)(6.8)(10.12) 

Double coset generator # 9 (1.9. 11.8,6)(2, 12,4,7, 10) Intersectmn S,ZF 1s 12 The mtersectmn group and 



COHOMOLOGY OF hf,* 131 

con,“gate are 
id id 
(1,10,11)(4,9,8)(5.6,7) (1.11,12)(4.5,8)(6,7,9) 
(1,11,10)(4.8.9)(5.7,6) (1,12,11)(4.8,5)(6,9,7) 
(1,11,12)(2,8.9)(3,6,5) (1,10,11)(2,6,9)(3,8,5) 
(2,4,9)(3,7,5)(10,11,12) (1,10,12)(2,7,9)(3,4,5) 
(1,10)(2,9)(3.5)(4,S)(6,7)(1~. 12) (1,10)(2,9)(3,5)(4,8)(6,7)(11,12) 
(2,9,4)(3,5,7)(10,12,11) (1,12,10)(2,9,7)(3,5,4) 
(1,11)(2,4)(3,7)(5,6)(8,9)(10,12) (1.11)(2,7)(3,4)(5,8)(6,9)(10,12) 
(1,12)(2,8)(3,6)(4,9)(5,7)(10,11) (1,12)(2,6)(3,8)(4.5)(7,9)(10,11) 
(1.10,12)(2,8,4)(3,6,7) (2,6,7)(3.8,4)(10,11,12) 
(1.12,1OP,4,8N.7,6) (2,7.6)(3,4,8)(10,12,11) 
(1,12,11)(2,9,8)(3.5,6) (1,11,10)(2,9,6)(3,5,8) 

There are 8 conjugates of this group in W 

Con,ugate number 1 Conjugate number 2 Conjugate number 3 

1;1,11,12)(4,5,8)(6.7,9) 
id 
(1,11,12)(2,4,6)(3,7.8) f;i,10,11)(4,9,8)(5,6,7) 

(1,12.11)(4,8,5)(6.9,7) (1.12,11)(2,6,4)(3.6,7) (1,11,10)(4,8,9)(5,7,6) 
(1.10,11)(2,6,9)(3,~,5) (1.10,11)(2,5,4)(3,9,7) (1,11,12)(2,8,9)(3.6.5) 
(1% 10.12)(2,7,9)(3,4,5) (1,10,12)(2.5,6)(3,9,8) (2,4,9)(3,7,5)(10.11.12) 
(1.10)(2,9)(3,5)(4,8)(6.7)(11,12) (1.10)(2,5)(3,9)(4,6)(7,8)(11,12) (1,10)(2,9)(3,5)(4,8)(6.7)(11,12) 
(1,12.10)(2,9,7)(3.5,4) (1.12,10@,6,5)(3,~~9) (2.9.4)(3.5,7)(10.12.11) 
(1,11)(2,7)(3,4)(5,8)(6.9)(10.12) (1.11)(2,4)(3,7)(5.6)(8,9)(10,12) (1.11)(2.4)(3,7)(5,6)(8,9)(10,12) 
(1,12)(2,6)(3,8)(4,5)(7.9)(10,11) (1.12)(2,6)(3,8)(4.5)(7,9)(10,11) (1.12)(2,8)(3.6)(4.9)(5,7)(10.11) 
(2,6,7)(3.8.4)(10,11,12) (4,6,5)(7.8,9)(10,11,12) (1,10.12)(2,8.4)(3.6,7) 
(2,7,6)(3.4,8)(10,1~,11) (4,5,6)(7.9,8)(10,12,11) (1.12.10)(2,4.8)(3,7,6) 
(1.11,10)(2,9.6)(3,5.8) (1.11,10)(2,4.5)(3,7,9) (1.12.11)(2,9,8)(3,5.6) 

Conjugate number 4 Conjugate number 5 ConJugate number 6 

~;.l2,11)(4,8,5)(6,9,7) 
td 
(1,10.11)(2,i.8)(3,4.6) &2.11)(2,7.5)(3.4.9) 

(1.11,12)(4,5,8)(6.7,9) (1.11,10)(2,6,7)(3,6.4) (1.11.12)(2.5.7)(3.9.4) 
(2,5.8)(3,9,6)(10.11,12) (1.11,12)(2,5.7)(3.9,4) (2.6,7)(3,8,4)(10,11,12) 
(1.12,10)(2,4,8)(3.7,6) (2,5,8)(3,9,6)(10,11,12) (1,12.10)(2,6,5)(3,8.9) 
(1,11)(2.8)(3.6)(4,5)(7,9)(10,12) (1,10)(2,5)(3.9)(4,6)(7,8)(11.12) (1.11)(2.6)(3.8)(4.9)(5,7)(10,12) 
(1.10.12)(2,8,4)(3.6,7) (2,8,5)(3,6,9)(10.12.11) (1.10.12)(2,5.6)(3.9.8) 
(i.10)(2.4)(3,7)~5,B)~6,9)(11.12) (1.11)(2,i)(3.4)(5,8)(6,9)(10.12) (1,10)(2.7)(3,4)(5.6)(8.9)(11.121 
(1.12)(2,5)(3,9)(4.8)(6,7)(10.11) (1.12)(2,8)(3.6)(4,9)(5.7)(10.11) (1.12)(2.5)(3.9)(4.8)(6.7)(10.11) 
(1,10,11)(2.5,4)(3.9,7) (1.10,12)(4,6,9)(5,7,8) (1.10.11)(4,9,8)(5,6,7) 
(1,11.10)(2.4,5)(3.7,9) (1.12.10)(4.9,6)(5.8,7) (1.11.10)(4.8,9)(5.7.6) 
(2.8.5)(3,6,9)(10.12,11) (1.12.11)(2.7,5)(3,4.9) (2.7.6)(3,4.8)(10.12.11) 

Conjugate number i Conjugate number 8 

&5)(7.8,9)(10,11.12) ;~,12.11)(2,6,4)(3.8.7) 
(4.5.6)(7,9,8)(10.12.11) (1,11,12)(2,4,6)(3,7.8) 
(1,12,11)(2,9,6)(3,5,6) (2,4,9)(3,7,5)(10,11.12) 
(1,10,11)(2.7,8)(3,4,6) (1,12,10)(4.9,6)(5,8,7) 
(1,11)(2,S)(3,6)(4,5)(7,9)(10,12) (1,11)(2,6)(3.8)(4,9)(5,7)(10,12) 
(1,11.10)(2.8,7)(3,6,4) (1,10,12)(4.6,9)(5.7,8) 
(1,10)(2.7)(3.4)(5.6)(6,9)(11.12) (1,10)(2,4)(3,7)(5.8)(6.9)(1~,12) 
(1.12)(2.9)(3.5)(4.6)(7,8)(10,11) (1,12)(2.9)(3,5)(4.6)(7.8)(10.~1) 
(1,12,10)(2,9.7)(3,5.4) (1.10,11)(2.6.9)(3,8,5) 
(1.10.12)(2.7.9)(3.4.5) (1,11.10)(2.9,6)(3,5,8) 
(1,11.12)(2.P.9)(3,6.5) (2,9,4)(3.5,7)(10,12.11) 
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Double co& generator # 10: (1,3,10,2,11,4.6.12,7,8)(5,9) 1 n ersection mm is 32 The inlersectmn t 
group and conjugate are 

t; 11)(4 7)(6 @(IO 12) 
(1: 12kW5:6)03.~) 
(2>3)(4,7)(5,9)i& 8)’ 
(1.10.12,11)(5,8,9,6) 
(1,11,12.10)(5,6,9,6) 
(1,11)(2,3)(5,9j(10,12) 
(1,12)(2,3)(5,8)(6,9) 
(1, W(%4j(3,W,9j 
(4,7)(5,8)(6,9)(10,11) 
(1,10)(4,7)(5,9)(11,12) 
(1,10,12,11)(2,3)(4,7)(5,6,9,8) 
(1,11,12,10)(2,3)(4,7)(5,8,9,6) 
(1,10,12,11)(2,7,3,4)(5,9)(6,8) 
(l,ll, 12,10)(2,4,3.7)(5,9)(6,6) 
(2,4,3.7)(5,6,9,8) 
(1, W(5>W,WO,ll) 
(2,7x3,4)(5,8,9,6) 
(1,11,12,10)(2,7,3,4) 
(1,1W,W.4)(6,8) 
(2,3H5,6K8.9KlO, 11) 
(1.1’3)(2,3)(6,8)(11,12) 
(2.7)(3,4)(5,9)(10,11) 
(1.11)(2,7)(3,4)(5,8)(6,9)(10,12) 
(1.10)(2,4)(3.7)(5,8)(6,9)(11.12) 
(1,11)(2,4)(3,7)(5,6)(6,9)(10,12) 
(2,4)(3.7)(6,8)(10,11) 
(1,10)(2,7)(3,4)(5,6)(S, 9)(11,12) 
(1,12)(2,7,3,4)(5,6,9,8)(10,11) 
(1.10,12,11)(2.4,3,7) 
(1.12)(~.3)(4,7K10,11) 
(1,12)(2.4,3,7)(5,8,9,6)(10,11) 

There are 3 conjugates of this group I” W 

Conjugate number 1 

ft W, WW 12) 
(4,9)(5,7)(6,8)(11,12) 
(1,10)(4.7)(5,9)(11,12) 
C&8.3,6)(4,% 7x5) 
(2,6,3,8)(4,5,7x9) 
(1. W(2,W,6M.9) 
(1>10)(4.5)(6,8)(7,9) 
(1, W(5~W,WlO, 11) 
(2.3)(4,5)(7,9)(11,12) 
(2,6)(3,8)(5,9)(11,12) 
(1,10)(2,8,3,6)(4,5,7.9)(11,12) 
(1,10)(2,6,3.8)(4.9,7,5)(11,12) 
(1,11,10,12)(2,8,3,6j(4,7)(5,9j 
(1,12,10,11)(2,6,3,8)(4,7)(5,9) 
(1,12,10,11)(4,5,7,9) 
(2.3)(4,7X%9)(6,8) 
(1,11,10,12)(4,9.7,5) 

;~,8)(3.6)(4,7)(11,12) 
(4,9)(5,W,8)(11,12) 
(1,10)(4,7)(5,9)(11,12) 
(2,8,3,6)(4,9,7,5) 
(2,6,3,8)(4,5,7.9) 
(1,10)(2,8)(3,6)(5,9) 
(1,10)(4,5)(6.8)(7,9) 
(1,12)(5,9)(6,8j(lO. 11) 
(2,3)(4.5)(7,9)(11,12) 
P,W’,W,W1,1’4 
(1,10)(2.8,3.6)(4,5,7,9)(11.12) 
(1,10)(2,6,3.8)(4,9,7,5)(11,12) 
(l,ll,lO, 12)(2,8,3,6)(4x 7)(5,9) 
(1,12,10,11)(2.6.3,8)(4.7)(5.9) 
(1,12,10,11)(4,5,7.9) 
(2,3)(4.7)(5,9)(6,8) 
(1,11,10,12)(4,9,7,5) 
(1.11,10,12)(2,6,3,8) 
(1,11)(4.7)(6.8)(10.12) 
(1,10)(2,3)(4,9)(5,7) 
(1,10)(2,6)(3,8)(4,7) 
(1,11)(2,3)(5,9)(10.12) 
(1,11)(2,8)(3,6)(4,5)(7.9)(10,12) 
(1,12)(2,6)(3,8)(4,5)(7,9)(10,11) 
(1,12)(2,8)(3,6)(4,9j(5,‘1)(10,11) 
(1,12)(2.3)(4,7)(10,11) 
(1,11)(2,6)(3,8)(4,9)(5~7)(10> 12) 
(1.11,10,12)(2.3)(4.5,7,9)(6.8) 
(1,12,10,11)(2,8,3,6) 
(1,10)(2,3)(6,8)(11,12) 
(1.12,10,11)(2,3)(4,9,7,5)(6,8) 

Conjugate number 2 Conjugate number 3 

1:, 11)(2,9)(3,5)(4,7) ;:,4)(3,7)(6,8)(10.11) 
(1,11)(4,W,9)(7.8) (4,7)(5.8)(6,9)(10.11) 
(1.11)(4,7)(6,8)(10,12) (1,12)(5,9)(6,8)(10.11) 
(2,9,3,5)(4x6,7,8) (2,4,3,7)(5,6.9,8) 

(2,7,3,4)(5.8.9.6l .-.-.-, 
(1.12N2.4) 

(%5.3.9)(4,8,7, ‘3) 
(2, W, 5)(6,8)(10.12) 
(4,8)(5,9)(6,7)(10,12) 
(1.12)(5,9)(6,8)(10,11) 
(1,11)(2,3)(4,8)(6,7) 
(1,11)(2,5)(3,9)(6,8) 
(1,11)(2.9,3,5)(4,8,7,6)(10,12) 
(1,11)(2.5,3,9)(4,6,7.8)(10,12) 
(1,12,11,10)(2,9,3,5)(4,7)(6,8) 
(l,lO, 11,12)(2,5,3,9)(4,7)(6,8) 
(1,10,11,12)(4,8,7,6) 
(‘AW4,7)(5,9)(6,8) 
(1,12,11,10)(4,6,7,8j 
(1,12,11,10)(2,5,3,9) 

~. ,~ ,(3,7)(5.9) 
(1,12)(4,7)(5,6)(8,9) 
(l,lOK4,7W,W1,12) 
(2,3)(5,6)(8,9)(10,11) 
(2,7)(3,4)(5,9)(10.11) 
(1,12)(2,4,3,7)(5,8,9,6)(10,11) 
(1,12)(2,7,3,4)(5,6,9,8)(10,11) 
(1,11.12,10)(2,4,3,7)(5.9)(6.8) 
(1,107 12,11)(2.7,3.4)(5,9)(6,6) 
(1,10.12.11)(5,8,9,6) 
(2x3)(4,7)(5,9)(6,8) 
(1,11,12,10)(5,6,9.8) 
(1,11,12.10)(2.7.3,4) (1,11,10,12)(2.6,3,8) 

(1,11)(4,7)(6,8)(10.12) (1,10)(4,7)(5,9)(11,12) (1.11)(4,7)(6,8)(10,12) 
(1,10)(2,3)(4,9)(5.7) P,3)(4,W7,8KlO, 12) (1,12)(2,3)(5,8)(6,9) 
(1,10)(2,6)(3,8)(4,7) (2,5)(3,9K4.7)(10,12) (1,12)(2,7)(3,4)(6,8) 
(l,llj(2,3)(5.9)(10,12) (1,10)(2,3)(6.8)(11,12) (1,11)(2.3)(5,9)(10.12) 
(1.11)(2,8)(3,6)(4,5)(7,9)(10,12) (1,10)(2,9)(3,5)(4,8)(6,7)(11,12) (1.11)(2,4)(3.7)(5.6)(8,9)(10,12) 
(1,12)(2,6)(3,8)(4,5)(7,9)(10,11) (1,12)(2,5)(3,9)(4,8)(6,7)(10,11) (1.10)(2,7)(3,4)(5,6)(8,9)(11,12) 
(1,12)(2,8)(3,6)(4,9)(5,7)(10.11) (1.12)(2,9)(3,5)(4,6)(7,8)(10,11) (1,10)(2,4)(3,7)(5,8)(6.9)(11,12) 
(1,12)(2.3)(4,7)(10,11) (1,12)(2,3)(4,7)(10,11) (1,10)(2,3)(6.6)(11,12) 
(1,11)(2,6)(3,8)(4,9)(5,7)(10,12) (1,10)(2,5)(3,9)(4,6)(7,8)(11,12) (1,11)(2,7)(3.4)(5,8)(6.9)(10,12) 
(1,11,10,12)(2,3)(4,5,7,9)(6,8) (1,12,11,10)(2,3)(4,8,7.6)(5,9) (1,11,12,10)(2,3)(4,7)(5,8,9,6) 
(1,12,10,11j(2,8,3,6) (1,10,11,12)(2,9,3,5) (1 10 12 ?l)(S 4 3 7) 
(l,W2!3)(6,8j(lL 12) (1 ll)(: 3jj5 Y)(lO 12) (1: 12;(2,‘3)(4,$ld, 11) 
(1,12,10,11)(2,3)(4,9,7,5)(6,8) (1:10,11’,12);2,3)(~,6,7,8)(5,9) (1.10,12,11)(2,3)(4,7)(5,6,9,8) 
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