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IN this paper we determine the mod (2) cohomology of the sporadic simple group Mz2, 
a group first described by E. Mathieu [lo] in 1873. It is a group of rank four at p = 2, and of 
order 443 520 = 2’ 32 5 7 11. 

Our aiproach is to first determine the image of the restriction map from H*(M22; F,) to 
the cohomology of its conjugacy classes of extremal2-elementary subgroups. By a theorem 
due to Quillen and Venkov [2] this determines the cohomology up to nilpotence. Although 
for many groups this is actually an injection, for M 22 there is a non-trivial kernel (the 
radical), denoted Rad(M2,). We explicitly determine this ideal, which fits into an exact 
sequence 

0 + Rad(Mz2) -+ H*(M22; F,) + A! -i 0 

where ./Z is the image above. Of course, even though we determine _,+Y essentially completely 
as a ring, there is an extension problem in determining the ring structure of H*(M22; IF,) 
from the exact sequence, and we will see that the sequence is non-split. 

Our techniques are, in fact, sufficient to determine the extension data completely, but 
they require a precise description of 5 classes in &? which would require a considerable 
amount of computer time to obtain so we leave the description slightly incomplete, 
determining all of the elements in H*(M22; IF,), most of the cup product Information, and 
most of the action of the Steenrod algebra. 

The 2-local structure of M22 is well understood. There are three conjugacy classes of 
extremal2-elementary subgroups, V4 z W, z (Z/2)4 and V3 z (Z/2)3, each self-centralizing 
in M22. Their normalizers are semi-direct products G1 = V,: d6, G2 = W,: Ypg and 
G3 = V3: GL3(lF2) and we obtain the diagram of subgroups contained in M22: 

(*) 

where G1 n G2 = V,: Y4, Gi n G3 = V3: .Y4, G2 n G3 = V3: Y4, and Q, n G2 A G3 = 
UT4(2), the subgroup of upper triangular matrices in L,(2). 

This diagram corresponds exactly to a sporadic geometry obtained by Ronan and Smith 
[13] to which the local methods of Webb [ 171 can be applied (see [14]). Hence in principle 
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we could obtain H*(Mz2; [F,) from the cohomologies of the GLs and their various intersec- 
tions. However, it turns out that it is at least as hard to obtain the cohomology of these 
groups as it is to get the cohomology directly, and it is difficult to obtain the explicit ring 
structure from this. For these reasons we apply more classical (and direct) methods in this 
paper. 

Recall that if we have a triple of groups H c K c G, then H is weakly closed in K if every 
subgroup of K which is conjugate to H in G is already conjugate to H in K. When H is 
p-elementary and K contains a Sylow p-subgroup of G then the Cardenas-Kuhn theorem 
[2,7], asserts that 

im(res* : H*(G; IF,) -+ H*(H; lF,)) 

= im(res*: H*(K; F,) + H*(H; lF,)) n H*(H; lF,)WG(H’ 

where W,(H) = N,(H)/&(H) is the Weyl group of H in G. One of our critical facts is the 
following theorem 

THEOREM 2.8: Each of the extremal subgroups V4, W,, V3, is weakly closed in 

SYlz(M22)CMzz. 

Therefore, to understand the quotient H*(M 22; [Fz)/Rad it is necessary to first under- 

stand H*(Sy12(Mzz); lF,), the image of 

Oires* : H*(Sy12(Mzz); [Fz)-+ H*( V4; F,) @ H*( W4; F2) @ H*( V3; F2) 

and the invariants under the action of (de, Y5, L,(2)) on the three summands. 
The structure of H*(Sy12(M,,); IF,) was announced in [l] but the details of the proof 

were deferred to the present paper. The Dickson algebra 

EzCxr, xz, xJLa(*) = bCL &,&I, 

is well known. Here d4 is the Dickson element, the symmetric sum Sxf + Sxfxj2 + Sx?xjxk, 
Sq2(d4) = d6, Sq1(d6) = d7 and Sq4(d6) = d4d6. As a consequence Sq4(d7) = 

Sq4Sq’(d6) = Sq’Sq4(d6) = d,d, since Sq2Sq3 = Sq4Sq’ + Sq’Sq4 and Sq3(d6) = 0. The 
LX& invariant subring is determined in [3] as 

F,[a, b, c, d14 = F2[w3y y5, 4, d121U, y9, b15, Y9b15) 

where W3 is the symmetric sum Sx?xj, as the xi, xj run over a, b, c and d. Also, ys = Sq2(w3), 

y9 = Sq4(y5), d12 = Sq4(d8) and d8 is the Dickson element, the symmetric sum 
SX! + SX~X~ + SX~X~X~ + SXiXjXfXf + (~1~2~3x4)~. We should notice here that 
Sq’(y,) = W: and Sq’(y,) = y:. Finally, the Y; invariant subring is determined in [l], but 
in a form not well adapted to our needs here. Consequently we discuss the ring further in 
Section 5 and we obtain 

ff2 [a, b, c, d]“’ = F2C%, y5, ds, 42lU, n6, n8, y9, nlOI n12, x12, x14,x15, x16, x18, x24) 

where Sq*(n,) = ng, Sq4(n6) = nlo. n12 = n& xl2 = Sq4(n8) and xl4 = n6n8. Moreover, in 
the invariant subring 

Sq’(n,) = 0 

Sq’(n8) = w3n6 

Sq'(nlO)= w3% + y5n6 

%'(xl2)= *3nlO + Y5n8 

Sq1(x14) = w3ng. 
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Consequently, Sql(K~~x~~ + ysnlO) = yin,. The exact structure of the elements 

xi5, x16, xl8 and xz4 are not known to us currently, but could be determined by extending 

the analysis of (5.1). 
The image of restriction in each of H*( Vd/k; F,), H*( W,; IF,) is the entire invariant 

subring while the image in H* (V,; F,) is IF2 [d:, d6, d7] (1, d4ds, dad,). Thus, to describe the 
image of H*(M 22; ff 2) in the direct sum H*( V4; [F,) @ H*( W4; IF,) @ H*( V,; IF,) we need 
to describe the multiple image classes, i.e. those classes which have non-trivial image in 
more than one of the three rings. It turns out that they are generated by (WJ, W3, 0), 

(0, n6, de), (0, nlo, d,ds) together with the polynomial ring lFz[ds, dlz], where 
d8 ++(d8, d8, di), d12 H(d12, d12, di). In fact the above completely describes the multiple 
image classes when we note that (W$, 0, 0), (ys, 0,O) and (0, 0, d,) are also in the restriction 
image. It is important to notice also that the multiple image property changes the Sq’ 

operation on the elements which restrict, respectively, to (0, n6, ds) and (0, nlo, d4d6), so in 

H*(Mzz; F,) we have Sq’(n,) = (O,O, d,) while Sq’(nlo) = (0, tVJns + ysn6, d4d7). 

In summary, we can describe the non-nilpotent part of H*(Mz2; IF,) as the direct sum 

where the two copies of F2[d8, d12](1, W3) in the first two rings are identified. The key 
technical step in this determination, after we have proved (2.8) is to show that (b, 5, 0,O) is in 
the image of the restriction map from H*(Mz2; Fz). 

Finally, the radical is discussed at the end of Section 5 and shown to have the form 

where the mod4 Bockstein /?4(a2) = W3, while some higher Bockstein of a7 is d8, and 
a higher Bockstein of a,, is dlz. There are further higher Bocksteins which we do not 
completely understand at this time, but aside from that our results give a complete 
determination of H*(Mz2; [F,), though there does remain an extension problem for deter- 
mining the ring structure. 

This extension problem can be handled in the following way. It turns out, (Proposition 
5.4 in the text), that the restriction map H*(Mz2; [F,) + H*(Syl,(L,(4)); F,) is injective on 
the radical. Here L,(4) = Mzl and H*(Syl,(L,(4)); F,) is completely determined in [l]. 
Thus, we can use the results there to completely determine the structure of the extension 
data. In particular, we have the following representations for a7, all and al4 from [l, p. 197, 
line 51: 

a7 = %d2v + zI%~w = d%(dv + %w) 

= a2vsU) 

all = %d2w2 + &d%2v2 = .d%(Jidw2 + %u2) 

= a,?+(l) 

a14 = d%v3 + s3’bw3 

= Y,(l)Y&) 

and this last relation shows the extension is non-trivial. By a similar calculation we also 
have 

~s(l)r5(2) = azds 

and we check that 

Ydlh = 0. 
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This gives all the extension info~ation in dimensions less than about 16 and if our 

unde~tanding of b15tx15,x16,x1s and xz4 were better we could complete the determina- 
tion of the extension data, but, as the results above show, the extension data is highly 

non-trivial. 

Remark. In our original discussion we neglected to discuss the nature of the extension, 
and we thank the referee for energetically pointing this oversight out to us. 

Remark. Since H*(MZ2; ffZ) is not Cohen-Macaulay the Poincare series, expressed as 
a rational function, gives us very little insight into the structure of the cohomology groups. 
Hence we have chosen to omit it from our paper. 

It is worthwhile to note that MZ2 can be expressed as a quotient of the direct limit I of 

the triangle of subgroups (*), also known as the amalgamated free product of Gr , Gz, G3 
along their intersections. Shpectorov [lS] has in fact proved that this is a group isomor- 
phism. From this and our previous work [4], it turns out that all the Mathieu groups we 
have analyzed (M, 1, M12, Mzl , Mz2) are quotients of amalgamated free products (of 
proper subgroups) which are CohonIologous to them at p = 2. This appears to be a phenom- 
enon which has interesting geometric consequences. 

Another interesting consequence of the calculation presented here is the very recent 
determination of the mod2 cohomology of the next Mathieu group, MZ3, by Milgram. 
Remarkably the classifying space of this finite group turns out to be homologically 
4-connected, thus disproving a conjecture due to Giffen. 

Coefficients in [F2 are assumed throughout, so they will be suppressed. We would like to 
thank Smith for useful comments and Ivanov for kindly pointing out Shpectorov’s result to 
us. 

1. M,, AND ITS SUBGRQUPS 

M22 is one of the Mathieu groups, a sporadic simple group of order 
443,520 = 2? 3’ 5 7 11. It can be given as the subgroup of y,, generated by the permuta- 
tions. 

X=(1234567891011)(121314151617181920212122) 

Y=(1453)(281076)(1215162014)(1319211817) 

2=(1122)(814)(4539)(13181719)(2161015)(720612). 

We will be interested in Sy12(MZ2) and in certain subgroups which contain Sy12(MZ2). 
Syl,(M,,) has center Z/2 and is given as a central extension 

where U&(2) is the Sylow 2-subgroup of L,(2) 2 _Q&. In Section 4, where we determine 
H*(s~l,(M~~f), we will also make extensive use of two index 2 subgroups of Sy12(MZ2) 
which are also isomorphic to UT,(2). In particular, there are also two representations of 
SY~~(M~~) as semi-direct products UT,(2): 2. 

But now we describe the normalizers of the 2-elementaries, four of which contain 
Sy12(Mz2). Recall that there is an isomorphism Sp, z Sp,(lF2), hence & z Sp,(ff2)’ acts via 
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this inclusion on V4 = (Z,)4. Let G, denote the corresponding semi-direct product 

Similarly we have an isomorphism A&‘~ 2 SL,(lF,), which induces an d5-action on V4 
(regarded as (lF4)‘) that extends uniquely to an 9’S action on W, via the action of the group 
Gal([F,/lF,) g Z/2 on the coefficients of the matrices. Let Gz denote the corresponding 
semi-direct product 

G2 = W4: Y5. 

Janko [6] has shown that there are exactly two elementary abelian 2-subgroups of rank 4 in 
Sy12(MZ2), V4 and W,, that N,,,(V,) E Gr, NMZ2( W,) z GZ, and both are maximal in 
Mz2. Furthermore, representative subgroups G1 and G2 may be chosen so that 

G1 n G2 z V4: Y4. 

There is a second Y4cd6. (If the first is ((12)(5 6),(12 3), (12)(3 4)) then the second is 

((I 2)(34),(13 5)(246),(13)(24)).) Th e resulting extension V4: Y4 is the centralizer of an 
involution in Mz2, [6]. 

There is another extremal subgroup of interest to us, the semi-direct product 

G3 = V3: GL,(IF,) 

where V3 E (Z2)3 represents a maximal elementary abelian subgroup in Mz2, with nor- 
malizer G3. We can choose G3 so that 

G1 nG3 z V3: Y4 

GznG3 z V3:Y4 

G, n G2 n G3 = V3: D, 

where the Y4’s are distinct parabolics in GL,(ff,), with intersection D8. 

There are two further classes of 23’s in Mz2, one in V4 and one in W,. Indeed, the 
actions of ZX& and Y5 are both transitive on the 23’s in V4 and W4. 

Finally, there are four classes of 22’s in M 22. AZ& acting on V4 gives two non-conjugate 

22’s, V,,, and V2,0 in V,, while Sp, acting on W4 gives three non-conjugate 22’s in W,. The 
classes of 22’s in W, are distinguished by the determinant of a basis as an element in the 
orbit set [F4/Gal(lF4/lF2). Specifically, start with a basis of [F: over [F4, then representatives 
for the classes are the [F2-vector spaces, ( el, j,e,) with determinant 0, (e,, e2) with 
determinant 1, and (e, , c3 e2 ) with determinant j,. The intersection of V3 with W4 is a copy 

of 22 with determinant 1, while V,,, = W, n V4 has determinant 0. To see that these groups 

are distinct we check in (2.11) that they have distinct centralizers: C( V2,,) = V4: E/3, 
C( V2,0) = Syl,(L,(4)), C( V2, 1) = W,: Z/2, C( V2,J = W,. However, for all four we’have 
N(22)/C(22) g L,(2) = yj. The following is a picture of the containments for the four 
classes of 22’s. 

A A r” 
V 2,s V 2.0 V2.r v2.1 

(1.1) 

There is a double coset decomposition 

M22 = Gi u GiuGr u G, wGi (1.2) 
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where o E G2, but w $ G2. In addition Gr n wG, w - 1 = d6 is normalized by w, so that the 
action restricts to one of the 2-Sylow subgroups of .& as a non-trivial outer automorphism. 
These details of the structure of the decomposition were determined by Overton using a Sun 
3/280 computer. However, it follows that this automorphism cannot introduce any non- 
trivial fusion among the 2”s and it cannot even introduce any non-trivial stability 
condition on cohomology since the Weyl group of each of the 22’s is a copy of L,(2). 

Identifying subgroups conjugate in M22, we can describe Gi , G2, G3 and their intersec- 
tions by the diagram 

(1.3) 

It is perhaps worthwhile to point out that some of these subgroups occur in a rather 
special way as automorphisms of compact complex surfaces. In fact Mukai [l l] has shown 
that Gr n G2 = V,: 9, and H = V4: d5 occur as maximal symplectic automorphism 
groups of a K3 surface. For the first group the associated K3 surface S 4 P3 is given by the 
equation X4 + Y4 + Z4 + T4 = 0; for the second group it is given by the equation 
X4 + Y4 + Z4 + P + 12X YZT = 0. In addition, he proves that SY~~(M~~) is the unique 
symplectic automorphism group of a K3 surface of order 27, and the largest 2-group which 
occurs in this way. Aside from providing a concrete description of these groups, these results 
indicate that they contain geometric information which may be reflected in their cohomol- 

ogy. 

2. THE SYLOW SUBGROUP OF M,, 

The 2-Sylow subgroup of Mz2 is especially interesting as it is also the Sylow subgroup of 
three other simple groups, two of which are sporadic, U,(3), M23, M’L, and it is closely 
connected to the Lyons group, Syl,(Ly) = Sy12(M2,):2. 

We pointed out in Section 1 that Sy12(Mz2) can be given as an extension 

1 -+ UT4(2) 4 Sy12(M2*) + Z/2 + 1 

and as a central extension 

1 + H/2 + SYI~(M~~)+ UT4(2)+ 1. 

We make these extensions explicit now and use them, together with results from [ 11, where 
we studied yet a third extension 

1 + Syl,(L,(4)) -I: SY~~(M~~) -+ Z/2 -+ 1 

to determine H*(Sy12(M2,)) in (4.1). 
The group UT4(2) r V4 x~(Z/~)~ has index two in SY~~(M~~) and is also the quotient of 

Sy12(M2*) by its center Z/2. UT4(2) is generated by the six elements A, B, C, D, a and /I, each 
of order two where (A, B, C, D) = V, and (~1, p) = (i?‘/2)2. Moreover, the action of LY and 
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j? on V, can be described via the diagram 

c* c 

aP J 
B ++ D 

B 

(2.1) 

where CI acts to exchange the rows while j? acts to exchange the columns. The symmetry 
between row and column results in the existence of an outer automorphism, 4, of UT,(2) 
given as 4 : ct CI /I. A c) B, while 4 fixes B and C. 

From this point of view we can think of Syl,(M,,) as the semi-direct product 

Sylz(Mz2) = W,(2): 2 = (W’,(2), 15) 

where E interchanges a,/$ but E(A) = BCD, E(B) = ABD, E(C) = ACD and E(D) = ABC. 
The center of UT,(2) is Z/2 = (ABCD), and, since E also fixes this subgroup, it is the 

center of Sy12(Mz2) as well. Consequently, as indicated, Sy12(Mz2) can be described as 
a central extension 2. U7’,(2), where, in the quotient by (ABCD), the identification with 
UT,(2) is given by the correspondence 

ABc( c* AC/l 

A 5 
tl t-) ;. (2.2) 

E 

It follows that 4 on the quotient above lifts to an automorphism of Sy12(Mz2) which we 
again denote by 4, 

so #J(B) = EC& 4(C) = EBCcr/?, 4(D) = EAD. In particular, the image 4( UT,(2)) is a sec- 
ond copy of UT,(2) contained in Sy12(M2,), 

c-, EBC@ 

2 
EC@ +-+ EAD ’ (2.3) 

ABc( 

Thus we have constructed two distinct copies of the elementary two group 24 contained in 
Sy12(Mz2). Moreover, from [6], these are the only copies of 24 contained in Sy12(Mz2). 

Remark 2.4. This outer automorphism, 4, is used to construct the 2-Sylow subgroup of 
the sporadic group Ly. 

Ml1 = L,(4) and Syl,(L,(4): 22) = Syl,(M2,), where 22 is the automorphism induced 
by the non-trivial element in the group Gal([F4/[F2). An embedding 

(&c&A, B, AD, BC)cL3(4) 
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is given by 

and a H 22. Under this isomorphism one of the elements of order three, r, in the intersection 

NYJ V4) r-l NW*2( W4) = v4 : 94 

corresponds to the matrix 

io 0 

( i 

01 0 
0 1 c-1 

so it acts on Syl,(L,(4)) via the rule z(aB) = aBE, z(A) = B, z(B) = AB, z(AD) = ABCD, 
r(BC)=ADandara=r-‘. 

We define 6 elementary 2-subgroups in UT4(2) as follows: 

W = (a, /3, ABCD ) 

a = ( ABa, ACfi, ABCD) 

W, = (a,AB,CD) 

Was = (ab AD, BC > 

W, = <P,AC,BD) 

V= (A,B,C,D). (2.5) 

One can think of these groups as inverse images in UT4(2) from the quotient UT4(2) 
obtained by factoring out the center, since they all contain the center. In this way L?+Y and 
$8 arise from the two rows while the group Vcomes from A and the product of the two rows, 
and the W, come from the two columns and their product. In particular, since both rows 
and columns are in the intersection of UT4(2) and $(UT,(2)) it follows that the W, and the 
9, g groups are contained in this intersection, but since 4 interchanges rows and columns, 
their roles are interchanged. 

The group L& contains two conjugacy classes of elements of order three, one of which 
acts without fixed vectors on V4 and the other of which has a (Z/2)2 fixed space. We already 
determined the action of r on Syl,(L,(4)). The action of an element in the other conjugacy 
class, T, on UT4(2) is given by T(a) = p, T(B) = a/3, and 

T(A) = B, T(B) = C, T(C) = A, T(D) = D 

while ETE = T- ‘. Clearly Tcyclically permutes the three groups W, , W, and Was in (2.5), 
while it normalizes g and V. Again rT = T2z and (r, T) z Y3. 

Incidentally, there is only one conjugacy class of involutions in Mz2 and 

(UT,(2), T, E) = V4:Y4 

is the centralizer of ABCD in M22, [6]. It corresponds to the second conjugacy class 
Y4 CJ&, and is not isomorphic to Gr n G,. 

We now identify a representative of the extremal 23, V3, with (a,fi, ABCD). 
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PROPOSITION 2.6. Each of the groups W,, Wms, W, in (2.5) is contained in a 24~ Mz2. 

Proof: WDls c (E, a/I, AD, BC ) and the element T described before (2.6) is contained in 

V: ~&cM~~. But T acts transitively on the three groups W,. n 

Next we have the following lemma. 

LEMMA 2.7. If L c Sy12(Mz2) is conjugate to V, in Mz2 then L = (a,fl, ABCD) or 
(aAB, /?AC, ABCD) and both groups are already conjugate in Sy12(Mzz). 

Proof: L b V,, so the projection 7~: V4: D8 + D8, when restricted to L, has image either 
a copy of Z/2 c Dg, or one of the two (Z/2)2’s in D8, (a, /I) or (E, a/I). 

There are five copies of h/2 in D8, (a), (a/?), (/I), (E) and (Eafi). Suppose that 
n(L) = (tl). Then there is an element Oae L with 0~ V4. Since (ea)2 = 1 we have that 
8 commutes with a. Hence 8 E (AB, CD) and L = W, which is impossible by the previous 
result. Similar arguments work for (/I) and (a/I). If n(L) = (E) then 8E c L and 
0~ (AD, BC). It follows that LC (E, a/I, AD, BC). A similar argument works if 
n(L) = (Eafl). 

Suppose x(L) = (E, a/l). Again it follows that LC (E, a/?, AD, BC), so the only case 
which remains is n(L) = (a, j?). In this case 001 and r/I are contained in L with 
OE( AB, CD), ZE (AC, BD). The element common to these groups is ABCD, so, since 
L n V4 = Z/2, it follows that ABCDE L. Thus, we can assume that 8 = AB or 8 = 1. 
Suppose that 8 = 1. Then, rfl and a commute so r = 1, and L = W. If 8 = AB then a similar 
check shows that r = AC so L = ABA. n 

COROLLARY 2.8. Each of the three extremal elementary two groups V4, W4, V3 is weakly 
closed in SY~~(M~~) in Mzz. 

Proof: We know that SY~~(M~~) only contains the two copies of 24, V4 and W4. 
Moreover, they are not conjugate in Mz2 since they have non-isomorphic normalizers 
there. Thus they are weakly closed in Sy12(Mz2), and the result above shows that V3 = a is 
also weakly closed in SY~~(M~~). n 

The core of the structure of Mz2 comes from the amalgamation 

V4:dfj . . w4:sp5 

v4:94 

where the group V,: Sp, = Cl n G2. Let J? = W4:(Y3 x Z/2)c W,: 9’S be the subgroup 

where 1~ W,: Y5 is represented by the matrix 

i 0 0 1 0 0 1 0 0 1 i . 

JY is not conjugate to any subgroup of V4: ~4~ though Sy12(4 is conjugate to the second 
UT4(2)cSy12(M2,), ( W,,u,AB). Set JV = An G1 n G2 z W4:9’3. Then we have the 
following lemma. 
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LEMMA 2.9. Let OEH*(G, n G,). Then BEim(res*: H*( W,:Z~~)-+ H*(G1 n G,)) $and 

only ifres*(B)E H*(N)“. 

Proof There are two double cosets of Gi n G2 in W,: Ys, corresponding to the double 

cosets of yk in Ys. In particular, for the non-trivial double coset Gi n G2 AC1 n Gz we have 

j12=land~G,nG2~r)G, n Cl = W4: Y3, with A commuting with Y3. Thus, an element 

in H*(G1 n G2) is stable if and only if the condition of (2.9) is satisfied. n 

LEMMA 2.10. An element 0~ H*(GI n G,) is in the image of restrictionfrom H*( V4: J&) if 

and only if 

(a) the restriction of@ to H*( V,) is contained in H*( V4)d6 and 

(b) the restriction of0 to H*(UT,(2)) is contained in H*(UT2(2))(T’. 

ProoJ: Once more we look at the double coset decomposition of V4:&,, in terms of 

G, n G2. As in (2.9) this is determined by the decomposition of ~2~ in terms of the copy of 

Sp, = ((12)(56), (123), (13)(24)) cd6. Thus there are three double cosets 

V,:x& = Cl n G2 u G1 n G2(456)G1 n G2 u G1 n G2(35)(46)G, n G2. 

Moreover, Gi n G2 n (456)G1 n G,(654) = (V,,(123)), so the constraint due to this 

double coset is subsumed in the assumption that the restriction of 8 is contained in 

H*( 1/4)&. Finally Gi n G2 n (35)(46)G, n G,(35)(46) = UT,(2) and UT,(2) together with 

(35)(46) are both contained in (UT,(2),E, T), the centralizer of (ABCD) in M22. w 

We next note the following lemma. 

LEMMA 2.11. Let BEH*(Sy12(M22)), then 8 is in the image of restriction from 

H*(G1 n G2) if and only if the restriction of 8 to H*(Syl,(L,(4))) is contained in 
H*(Syl,(L,(4)))‘. (This is again an easy exercise with double cosets.) 

Finally, we note that the results above give an effective method for determining when an 

element in H*(SY~~(M~~)) is in the image of restriction from H*(M22): 0c H*(Sy12(M22)) is 

contained in the image of restriction from H*(M22) if and only if it is in the image from 

H*( V4: de), the image from H*( W,: 9s) and its restriction to H*( V,) lies in H*( Vs)L3(2). 

The group H*(Syl,(L,(4)))’ has been studied in [l]. It has a radical but the restriction 

map H*(Syl,(L,(4)))‘/Rad + H*( V4) @ H*( W,) is injective. Also, Syl,(N) is isomorphic 

to the wreath product (Z/2)2 {Z/2 and its cohomology is detected by W,, 
(ABCD, @,a) = V,, both of which are normalized by A. It follows that the constraints 

imposed by .N are subsumed in the requirements that the restriction to H*( W,) be Y5 

invariant and to H*( V,) be invariant under L,(2). Consequently, we only need to study 

H*( UT,(2)) before we can completely control H*(M22). 
To conclude this section we give, as promised in Section 1, a list of the centralizers of the 

four 22’s in M22. From the structure of Syl,( M22) we see easily that each 22 in SY~~(M~~) is 

contained in a 23, so there are no more than four conjugacy classes. Moreover, since V3 has 

Weyl group L,(2) any two 22’s contained in V3 are conjugate. Thus the 22 in V3 

is V3 n W, = (cQ,ABCD) = V,.,. Likewise V,,, = VI n W, = (AD,ABCD), 

V2,( = (ABCD, E), and the remaining subgroup V2,, = (ABCD, ABC) c V4. In particular, 

each of these groups contains ABCD and so its centralizer is contained in (Syl,(M,,), T). 
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Consequently, we have 

C(V2.0) = SYl,(L3(4)) = ( v4, W4) 

C(~Z*l) = (W4,a> 

C(V2.d = w4 

C(V2.s) = ( v4> n (2.12) 

and, as claimed in Section 1, all the centralizers are distinct so these subgroups cannot be 
conjugate in Mz2. 

3. THE COHOMOLOGY OF UT,(2) 

The ring H*( UT,(2)) plays a decisive role in determining H*(Sy12(M2,)). In this section 
we determine H*(UT,(2)) and show that it injects into the sum of the cohomology rings of 
its elementary 2-subgroups. The procedure is to use the Stiefel-Whitney classes of its 
irreducible representations to construct enough elements to detect H* (UT,(2)). Conse- 
quently, we begin by determining the irreducible representations of UT4(2). 

There are two irreducible four-dimensional representations of UT4(2): the first, rl, is 
induced up from the one-dimensional representation of V, A H - 1, B, C, D H 1, while the 
second is E(r,). Let 

J= 

Then, on generators they are given explicitly as 

rl : 

-1 

AH 
1 l ‘i 1 

1 

BH l 
1 

-1 
1 

1 

and for r2 the same matrices for a,/I while 

r2 : 

Next there are six two-dimensional representations. They form two orbits under the action 
of the element of order three, T, constructed in Section 2, one which we denote ( + ) and the 
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other ( - ). The ones associated to c1 are given as follows: 

Finally, there are the eight one-dimensional representations with generators 

(A):Al+-l,CI,/?Hl 

(Lx):AH1,cxH-l,/?H1 

(~):AHl,@Hl,~H-1. 

We obtain from Table 1 restrictions of the Stiefel-Whitney classes of these representations 

to the 5 elementary 2-subgroups of H described above, where I- = e(l + m) + (I + m)*, 
8 = (Im(l + e)(m + e)), ei is the ith symmetric sum and W3 = e3 + 02cr1. Table 1 is, of 
course, highly redundant. Simplifying, we obtain a table of generators (Table 2) which are in 

Table 1. Restrictions for S-W classes 

Rep. S-W class ae W, WaS w, V 

rl 

rl 

rl 

f-1 

r2 
r2 
r2 

r2 
E 2. + 

E 
0. + 

L- 
E.,- 
4. + 
4. + 
E,. - 
E,.- 
E O#. + 

Em,. - 

:;I: 
(A) 

M’I 0 
w2 dz 
w3 d3 
M’4 v4 + vZd2 + vd, 
K’l 0 
M'2 dz 
M’3 d3 
fi’a v4 + v2d2 + vdj 
u’l k 
W2 0 
Wl k 
WZ (k + h)h 

WI h 

W2 0 

Wl h 

M’.? k(k + h) 

WI h+k 
W 2 0 

M’l h+k 

M’2 hk 

M’ I h 
w I k 

fi’ 1 0 
- 

0 
e* + r 

er 
0 

0 
e2 + r 

er 
H 
0 

0 

e: 
; 
; 
e 
r 
e 
r 

PI 
0 

- 

0 
e2 + r 

er 
0 
0 

e* + r 
er 
fl 

; 

r 
e 
r 

; 
0 
0 

,9 
e 

; 
- 

0 
e2 + r 

er 
8 
0 

e2 + r 
er 
0 

; 

r 
0 
0 

,9 

I 

; 
0 

PI 

Table 2. Image of restrictions from H*(UT,(2)) 

Name 9# w* was w, V 

62 + CT: 
03 + a: 

04 + W36, 

(a + b(;;c + d) 

(a + b;;c + d) 

(a + c;;b + d) 

(a + cy;b + d) 

(a + d;;b + c) 

(a + d;;b + c) 
0 
0 

61 

0 0 0 0 61 
h e e 0 0 
k 0 0 

0 r ; F 02 
0 er er er *3 

1,“ + v2dz + vdj 0 0 0 
0 0 r r (a + b;;~ + d) 
0 r r 0 (a + c)(b + d) 
0 r 0 r (a + d)(b + c) 
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the image of restriction from H*( UT,(2)), where the notation is the same as that in Table 1. 

Out of these generators we construct three elements of dimension three, 
u, = h(a + d)(b + c) = hy,,, ua8 = h(wz + yi4) and ug = ky,,. They restrict as shown in 

Table 3. 
In particular, we find that within the subring of H*(UT,(2)) generated by the elements 
above, the ideal given as the kernel of restriction to H*(V) $ H*(B) has the form 

P,C% wz, w~l(u,, ~4 0 ~2Ck,wz,wJq+ 

Moreover, the quotient by this ideal has the form 

IF,[w~]{[F~[h,k]O[Fz[w~,ab+cd,ac+bd,](l,ad+bc,w,,w,(ad+bc))}. 

It follows that the Poincare series for H*(UT,(2)) is at least as big as 

1 

[ 

3x3 1 1 + x2 + x3 +x5 

(1 - X)(1 - x”) 1 - x2 + 1 - x + (1 - x2)2 
-1+x 1 

1 + 2x + 2x2 + x3 - x4 - x5 

= (1 - x)(1 - x2)2(1 - x”) . 

We now show the following theorem. 

THEOREM 3. H*( UT4(2)) is exactly the ring above. In particular, H*( UT4(2)) is detected 
by restriction to the 5 elementary 2-groups 9$ W,, Was, W, and V. Moreouer, H*(UT,(2)) is 
generated by the Stiefel- Whitney classes of its irreducible representations. 

Proof: The index 2 subgroup LC UT4(2) generated by u, A, B, C, D is isomorphic to the 
wreath product (Z/Z)’ z Z/2. Consequently, 

H*(L)= F2[a+ b,c+d,ab,cd](l,ad+ bc)@F,[ab,cd,h]h. 

/? acts on H*(L) to interchange a + b and c + d. It also acts to interchange ab and cd. It 
follows that the E2 term of the spectral sequence for the extension from L to UT4(2) (which 
equals H*(Z/2; Hz(L))) is given explicitly as 

F2[w1,(a + b)(c + d),ab + cd,w,](l,ad + bc,w,,ws(ad + bc)) 

0 ff2[ab + cd, w4, h]h 

0 F2 Cw4, h, klhk 

0 F,[(a + b)(c + d), w4, k](k,k(ad + bc)). (3.2) 

When we compare the Poincart series for the E2 term above with the Poincart series of the 
subalgebra described before the statement of the theorem we see directly that they are equal. 
Consequently, the spectral asequence collapses and the result follows. n 

Remark 3.3. The cohomology of UT4(2) has been previously determined by Tezuka and 
Yagita [16]. However, the point of view here is quite different and the explicit identification 

Table 3 

Name 99 w. W@ w, v 

u, 0 eT 0 0 0 
c,&4 0 0 eT 0 0 
ufl 0 .O 0 eT 0 
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of the cohomology generators in our treatment is crucial in our determination of 
H*(Syl,(iV&). For a related discussion of some of the elements in H*( UT,(2)) see also [9]. 

We can understand (3.2) best in terms of invariants. Note that V is normal in UT,(2) but 
the Weyl group for W is 2’ = (AI?, AC), and the Weyl group of W, is D, = (A,p) so 

W,, WP and Was are normal in UT,(2) as well, while the normalizer of ~8, 

Nw4(2#33) = Ds * h3. 

LEMMA 3.4. For notational convenience write H = UT,(2), then we have 

(1) The ring of invariants H*( V)W”(“) is given as 

IF,[a,,ab + cd,ac + bd,a,](l,ad + bc,a3,(ad + bc)o,). 

where H*(V) = [F2 [a, b, c, d] with a dual to A, b dual to B, etc. while oi is the ith symmetric 

monomial in a, b, c, d. 

(2) The ring of invariants H*( Wdl)WH(W8) is given as 

[F,[e,(e + 1 + m)(l + m), lm(1 + e)(m + e)] 

where e is dual to a, 1 is dual to AB and m is dual to CD. 

(3) The ring of invariants H*(9~7)~“(“) is given as 

IFz[h, k, c(c + h)(c + k)(c + h + k)] 

where h is dual to a, k is dual to /? and c is dual to ABCD. 

Thus the image of the restriction map from H*(H) lies in these invariant subrings, and indeed, 

except for multiple image classes surjects onto these subrings. 

(This is direct.) 

4. THE COHOMOLOGY OF Sy12(M,,) 

There are at least three ways of looking at Syl,(M,,): first as a central extension of 
UT,(2), second as a semi-direct product UT,(2):2, and third as the semi-direct product 
Syl,(L,(4)): 22. In this section we determine the ring H*(Sy12(Mz2)) using these different 
decompositions to construct a sufficient number of non-zero cohomology classes so that we 
can show there are no possible differentials in the spectral sequence associated to the third 
decomposition (with E2 term H*(Z/2: X*(UT,(2)))). We initially wrote this E2 term down 
in [l] and recall it in (4.1). We will construct these classes from the Stiefel-Whitney classes 
of the irreducible representations of Sy12(Mz2) and as classes in the image of transfers. Then 
we will show they are non-zero by restricting to the abelian subgroups in (2.5). Thus we turn 
now to the structure of these representations. 

As we remarked in (2.1H2.3) UT,(2) occurs both as a subgroup of Sy12(Mz2) and as its 
central quotient. So far we have concentrated on the subgroup. Now we look at the central 
extension 

B/2 : Sy12(Mz2) : UT,(2). 

The most basic thing is to determine the K-invariant of the extension as that determines the 
kernel of rc* : H*(UT,(2)) --* H*(Sy12(Mz2)). 

In (2.2) we see that a and /I commute with each other, ABa and AC/I also commute. 
Moreover each of these elements has order two in Sy12(Mz2), as do A, E. However, the 
commutators [A, E] = [a, AC/?] = [/?, ABa] = ABCD, the central element. Consider now 
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the 5 detecting groups corresponding to the groups in (2.5) but for 
given in (2.2) and the central extension restricted to them. We find 

(&B,A&AC)++&*&7 

(A,AB,AC)H24 

(E, ap, ADaB) H 24 

(AE, ABaD, BC) H Q8 x 2 

(A,E,BC)-D8x2. 

In particular, the K-invariant for the extension restricts to 
a*(AC)* + /?*(AB)*, trivially to the second and third groups and as 

(AE)*(ABaB)* + ((ABaB)* + (AE)*)2 

M22 403 

the quotient UT4(2) 

the first group as 

in the fourth group. Finally, in the fifth group it restricts to A* E*. Consequently, the 
K-invariant has the form 

(hk, 0, l- + e2, 0, ad + bc), 

and this is the restriction of the element (E* + A*)2 + w2(r1) + wZ(EAE, +). 

Write K for this K-invariant. Note that (A* + E*)K~(d~,0,0,0,0). On the other hand, 
Sq’(K) H (d3, 0, eT, 0, (a + d)ad + (b + c) bc). Thus the element which restricts to 
(O,O,eI,O, Sq’(ad + bc)) maps to zero in H*(SYI~(M~~)), and, in particular h times this 
element, which restricts to (0,0,e21,0,0) also maps to zero in H*(Sy12(M2,)). But the 
K-invariant shows that A* E* maps to the same element as the element which restricts to 
(O,O, I, 0, ad + bc). Consequently, the image of A*( E*)3 is the same as that of the element 
which restricts to (O,O, e2r,0,0), and is thus zero. This shows that there are nilpotent 
elements in the ring H*(SY~~(M~~)) so H*(SYI~(A~~~)) cannot be detected by restriction to 

2-elementary subgroups. 
The projection (Z/2) 4 SY~~(M~~) + UT4(2) lifts back a copy of the representation ring 

of UT4(2) as a direct summand of the representation ring of SY~~(M~~). There is one further 
representation of this group that we need, r3, given by inducing rl on the copy of UT4(2) in 
(2.1) to SY~~(M~~). It restricts back to U7’,(2) as the direct sum rl + r2, and by Frobenius 
reciprocity is thus irreducible. Now, by a dimension count, we have found all the irreducible 
representations of SYI~(M~~). Call the representations of SY~~(M~~) obtained by pulling 
back the irreducible representations of the quotient UT4(2) by the same names that they 
had in the previous section. Then, on restricting back to the subgroup 
UT4(2) = (a, /3, A) c SY~~(M~~) we obtain Table 4 of Stiefel-Whitney classes where we have 
again left out redundant classes. 

To give the restrictions of the Stiefel-Whitney classes for the representation r3 to these 
elementary 2-groups we introduce some notation W3 = Sq1(w2) = w1 w2 + w3, 

Table 4. 

Rep class 9 wm w.s w/l V 

rl WI h+k 0 

rl W4 0 i r4 : (a+b)(a+c)(b+d)(c+d) 
E 
E;: 

W2 hk 0 ez 0 0 

WI h+k e 0 e 

E”- W2 0 I- 0 I- (a + d;:b + c) 
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Y4 = wdw2 + WI)? ys = sq2w3 = w4w1 + G'3w2, Ys =w4(w4+wW and 
p = u4 + u2dz + ud3 in H*(g). Then the only Stiefel-Whitney classes to restrict non- 
trivially are w4, we, w, and wa, and we have Table 5. 

There is also one other element that we should note which lies in the image of restriction 
from H*(Syl,(Mz2)), K, = (h + k)w4(rI). Indeed, it restricts to 

((h + k)(u4 + v2d2 + vd,),el9,0,eQ,O) 

which shows that K5 has the form (1 + E*)(hw4(rl)) and hence is in the image of the 
restriction preceeded by transfer. 

We now recall the partial results of [ 11. We considered the spectral sequence associated 
to the index 2 subgroup Sy12(L3(4))~Sy12(M22), where Syl,(L,(4)) can be identified with 
the explicit subgroup (A, B, C, D, E, UP). The E2 term is given explicitly as follows, where 
we have modified the notation of [l] to write the result more in keeping with the structure 
of H*( UT4(2)). 

0 { Fz[ys,(a + d)(b + c), {hk},sl/(@ + Mb + c)(hk) = o))(s, N6s). 

The way to read and understand what (4.1) means is 

(4.1) 

(1) In [l] it is shown that the ring of invariants 

Fz[dvdlD8 = ~z[~~,(a+d)(b + c),y,,Ys1(l,W3,N4,Y5,N6,N,,Ns,YsN6) 

and the first three lines of (4.1) show that the images under restriction to H*( V,) and 
H*( IV,) are these three invariant subrings. 

(2) The subring of multiple image classes in H*( V,) @ H*( IV,) is 

so, in particular, there is an element which restricts to (W:,O) in the direct sum but none 
which restricts to (W3,0). (It appears from the above that N6 is also multiple, and it is, but 
the class Nb restricts to (0, N6) in the direct sum, though Nk also has non-trivial restriction 
to H*( V3).) 

(3) The fourth line gives the terms in Rad(H*(Sy12(Mzz))). 
(4) The last two lines are the parts which cup non-trivially with s. Here s is dual to c1 or 

b, consequently restricts to h + k in UT4(2), and has filtration (1,0) while every other 
generator f3 has filtration (0, dim(e)). 

Table 5. 

4 e4 + r2 e4 + rz e4 + r2 y4+u,*3+u: 

4 eZrZ eZr2 e2rz Ul ys + w: + a:y, + u:& 
0 w1w: + w:y, 
P2 6p2 09 tz )I8 
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Table 6. Restriction images 

Class Restriction 

s’w2(EA_) 
SiW2L%+) 
s’WZ(E,_)2 

s’w*&+ Y 
S’K, 

(0, eT, 0, a, 0) 

((h + k)‘hk,O,O,O,O) 
(0,e’r2,0,e’r2,0) 

((h + k)‘(hk)Z,O.O,O,O) 
(O,e’+‘B.O,e’+‘B,O) 

(5) The class ys( 1) was originally described in [l] as du + Bw which, when multiplied 
by I + 9, gives the class .&9rv + 9&w. In turn, this class corresponds to the class Ts in the 
description above, while T, corresponds to (8’ + 9)2(~v + Bw). Thus we see that T, and 
T, are represented, respectively, as E* ys (1) and (E*)’ ys (1). 

It follows that the only possible differentials occur on elements not annihilated by s. The 
generators of this subalgebra are y6, (a + d)(b + c), { hk}, Vs, N6 and Nd. y8 can be taken to 
be ws(rj) and is thus non-zero. Moreover, the class (a + d)(b + c) is represented as 
wZ(EA_) while the class {hk} is given as w2(EA+), and s restricts to 
w1 (ri) = (h + k, e,O, e,O). The class E* restricts to 0 in H*( UT,(2)) and, indeed, the kernel 
of this restriction map is exactly the idealI E’): Finally, we will represent the class y4 above 

as w&3). 
We have already seen that the class K5 = ((h + k)(v4 + vZd2 + vd3), ee,O,e6,0) is in the 

image of the restriction map from H*(Syl,(M2,)). On the other hand, the elements ~~(1) 
and ~~(2) are both of the form (1 + cc*)L in H*(UT,(4)), hence cup trivially with s. It follows 
that the class Vs must be an infinite cycle in the spectral sequence and has a representative 
which restricts to Kg. As a consequence we have Table 6 of restriction images and these 
classes are all linearly independent. It follows that none of these classes, nor any linear 
combinations of them are hit by differentials in the spectral sequence. Thus N6 and N)6 must 
both be infinite cycles and, as was asserted in [l], the spectral sequence collapses. 

5. THE INVARIANT SUBALGEBRAS FOR H*(M,,) AND RAD(H*(M,,)) 

We begin by determining the invariant subrings which occur in H*( V4), H*( W,) and 
H*( VJ). Then the main difficulty in specifying H*(M22) will be to determine the radical. 

As we discussed in the introduction [F2 [xi, x2, x31Lsf2) = F2 [d4, d6, d,], the Dickson 
algebra, where Sq2(d4) = d6, Sq’(d7) = d7. From [3] we have 

~,Ca,hc,dld6 = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

where W3 = SxFxj, where the xi, xj run over a, b, c, d, while y5 = Sq2(W3), y9 = Sq4(y5) and 
d8, d12 are the Dickson elements. In [l] we show that 

IF2 Ca, b, c, 4 (ETaL7) = IF,[r,s,v,w](l,L,M,LM) 

where 

r=a+d 

s=b+c 

v = a2d2 + ad(rs + s2) 

w = b2c2 + bc(rs + r2) 
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L = adr + a2c + ac2 + bd2 + b2d 

M = a2c + ac2 + bcs + b2d + bd2. 

L and M are both invariant under the action of L,(4) = z&‘~ and tl acts to interchange r and 
s, L and M, v and w in pairs. In particular, L + M and LM are zY~ invariants. Finally we 
have the following lemma. 

LEMMA 5.1. Let 9s act on V4 as the extension Ys = L2(4):22, then 

~2Ca,b,c,dls = ~2C%,y5,d8,d121(1 ,n6,n8,y9,n101n~,X12,X14,X15,X16,X18,X24). 

Here n6 = LM, n8 = Sq2(n6), nlo = Sq4(n6), X 12 = Sq4(n8), X14 = n6&j2(n6) and wj is 
represented by L + M. In particular, this invariant subalgebra is Cohen-Macaulay over the 
same polynomial subalgebra as occurs for &&. 

Proof: Consider the inclusion (E, c$) c Y5. This gives an inclusion in the reverse order 
of the invariant subrings. Set W3 = L + M. (If we make the change of variables 
aHa+b+c,bHb+c,cHa+b,dHd,thenL+MHSx?xJ.,whiled8anddl2arefixed, 
so we can regard L + M as equal to W3.) Thus, we see that IF 2 [a, b, c, dlY5 contains 
the polynomial subalgebra 99 = IF2 [W,, y5, d8, d12]. In particular, we have the explicit 
relations 

L2 = (r + s)‘v + r2w + (r2s + rs’)L 

M2 = s2v + (r + S)~W + (r2s + rs2)M 

y5 = rv + SW + (r2 + rs + s2)(L + M) 

ds = v2 + VW + w2 + (r2 + rs + s2)4 

d12 = (r2 + rs + s2)d8 + (r2 + rs + s2)6 + (r2s + rs2)” + u*w + vw2. (5.2) 

It suffices to show that IF2[a, b, c, d]@~“~) is Cohen-Macaulay over 9. To do this 
consider the surjective map from a polynomial algebra on six formal variables (given the 
names of their images) to ff 2 [a, b, c, d]‘E*“tQ 

F2Cr,s,v,w,L,L + Ml+ [F2Cr,s,v,wl(l,L,M,LM) 

with kernel I, the ideal generated by the relations for L2 and (L + M)* generated by the first 
two relations above. It follows that (F2 [r. s, v, w] (1, L, M, LM)/(W - (11) is exactly 
[F2 [r, s, v, w, L] modulo the ideal, J, generated by the relations 

ru + SW, u2 + VW + w2 + r8 + r4s4 + s8 

u2w + uw2 + rt2 + r10s2 + r8s4 + r6s6 + r4s8 + r2s10 + st2, r2v + s*w 

(r2 + s2)v + r2w + (r2s + rs2)L + L2. 

To find this quotient explicitly we used Macaulay to construct a resolution of J over 
lF2[r, s, v, w, L]. Table 7 shows the generators and degrees in the resolution. 

Table 7. Generators and degrees in the resolution 

Dim Number of gem. Degrees 

1 5 566812 
2 10 11 11 1213141417181820 
3 10 17191920232324252626 
4 5 2529313132 
5 1 37 
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It follows that the Poincare series of the quotient F2 [r, s, u, w, L]/J is given as the 
alternating sum of the terms 

x3’ x25(1 + x4 + 2x6 + x’) 

(x - 1)2(x3 - 1)(x4 - 1)2 - (x - 1)2(x3 - 1)(x4 - 1)2 

+ 
x17(1+ 2x2 + x3 + 2x6 + x7 + x8 + 2x9) 

(x - 1)2(x3 - 1)(x4 - 1)2 

x”(2 + x + x2 + 2x3 + x6 + 2x7 + x9) - 
(x - 1)2(x3 - 1)(x4 - 1)2 

x5(1 + 2x + x3 + x’) 1 

+ (x - 1)2(x3 - 1)(x4 - 1)2 - (X - 1)2(x3 - 1)(x4 - 1)2 

This factors and simplifies to give the polynomial 

p(x) = x24 + 2x23 + 3x22 + 5x2’ + 9x2’ + 12~‘~ + 14x’* + 18x” + 23~‘~ 

+ 25~‘~ + 25~‘~ + 28~‘~ + 30~‘~ + 28x” + 25x” + 25x9 

+ 23x8 + 18x’ + 14x6 + 12x5 + 9x4 + 5x3 + 3x2 + 2x + 1. 

On the other hand, this quotient can be regarded as representing a generating set for 
F2 [r, s, u, w] (1, L, M, LM) over 9 and we see that there are exactly 360 generators required. 
But a short calculation shows that p(x) is also equal to the quotient 

(1 + .3)2(x3 - 1)(x5 - 1)(x8 - 1)(x12 - 1) 

(x - 1)2(x4 - 1)2 

which represents the minimal possible number of generating elements, and these two 
numbers are equal if and only if F2 [r, s, u, w](l, L, M, LM) is free and finitely generated, i.e. 
Cohen-Macaulay, over 9. But then F2 [a, b, c, dlYs is also Cohen-Macaulay over Q. 

It remains to see that the list of generators is correct. But in [l] we determine 
F,[a, b, c, dlY5. Its Poincare series is given after some simplification as 

1 + x6 + x8 + x9 + xl0 + 2x12 + x14 + x15 + xl6 + xl8 + x24 

(1 - x3)(1 - x5)(1 - x8)(1 - x12) 

Moreover, we know that n6 = LM is YS invariant and from this and the first two relations 
in the Grobner basis, it follows that (LM)’ will be part of a generating set for IF2 [a, b, c, d]” 
over 3. n 

COROLLARY 5.3. The images of the restriction maps res: H*(M22) + H*(V), where Vruns 

over the three extremal elementary 2-subgroups of M22 are given as follows: 

(1) For V = F4 the image of res* is 

~,Ca,b,c,4”16 = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(2) For V = W4 the image of res* is H*( W3)% determined above, 

(3) For V = V, the image of res* is F2[d6,d7,di](l,d4d6,d4d7). 

ProojY As we discussed in the introduction the Cardenas-Kuhn theorem shows that if 
VCS~I~(M~~) is weakly closed in G, then the image of res* is 

im(res* : H*(SY~,(M~~)) -+ H*(V)) n H*( V)3wG(“). 
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But (4.1) shows that the image of H*(Sy12(M22)) in V, is H*( V4)D8 and similarly for 
H*( IV,) and the first two statements follow from the Cardenas-Kuhn theorem. 

To prove (3) we note that (u4 + u2d2 + ud3)d2 + d: = d6, but this is the restriction of 
Nb + Ks(h + k) + d$. Also, d, = (II” + u2d2 + ud3)dj, and we have seen that this element 
is in the image of restriction from H*(SY~~(M~~)). The other classes are obtained sim- 
ilarly. H 

From (4.1) we see that the kernel of the sum of the three restriction maps above is 
H*(M22)n [F2[y4,ys](~1E*,aI(E*)2, T6, T,) and is the radical in the ring H*(M22). We 
now prove the following result. 

PROPOSITION 5.4. H*(M22)n F2[~4,~s](olE*,al(E*)2, T,, T7) is equal to 

H*(GI n G2)n IF~CY~,Y~I(~~E*,~~(E*)~, T6, T,) 

and this in turn has thefirm lF2[d8,d12](alE*, T7rull,u14). 

Proof: From the discussion of double coset decompositions at the end of Section 3 we 
see that the only constraint on the radical, since H*( UT,(2)) is detected by 2-elementaries, 
is the condition res*(r3)EH*(Sy12(L3(4))y. But this is clearly the same as saying the 
elements lie in Rad(H*(G, n G2)). 

We now determine Rad(H*(Gr n G,). From (4.8) of [l] we see that 

Rad(Zf*(Syl,(L,(4))) @I [F4 z [F4[u4, w4](&9, 9%‘, z&‘P2, 9d2) 

and /I acts to interchange the elements in the pairs (u, w), (&9,9&), (L&Y’, 9d2). Thus 

res* : Rad(H*(Sy12(M22))) + Rad(H*(Syl,(L,(4))) 

is an injection with image Rad(H*(Sy12(L,(4)))B, and it follows that 

Rad(H*(M22 )) g Rad(H*(Syl,(L,(4)))% 

where .4p3 = (/?, T). Now, the calculations in [l] at the beginning of Section 3 determine 
this invariant ideal and (5.4) follows. n 

6. THE MULTIPLE IMAGE ANALYSIS 

Although it is not strictly necessary, we begin this section by listing the images of 
restriction to the four 22 subgroups of Mz2. This will give an additional proof that n6 is 

multiple image. 

LEMMA 6.1. Consider the restriction maps 

res$:H*(W4)+ H*(V2,1) 

res::H*(V3)+H*(V2,1) 

res,*:H*(V,)+ Zf*(V,,,) 

resp*:H*(W4)+ H*(V2,0). 

We have that each restriction map on W3 is zero, each restriction map on d8 is (x2 + xy + Y~)~, 
each restriction map on d12 is by@ + y)14, resF(d,) = (x2 + xy + y2)* and 
resc(ds) = res$(ns) = (xy(x + y))‘. 
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Proof: A representative for V *, 1 is (ABCD, c$). The embedding V2, 1 c W4 c U7’,(2) of 

(2.3) shows that using the outer automorphism which switches V4, W, in SYI~(M~~) that we 
can identify V,, 1 with ( ABCD, AB) c V, and use the restriction map from H*( V4)Y5 to 
(ABCD, AB) to calculate the desired restriction, using (5.1) to write down explicit gener- 
ators for the invariant subring. On generators we find x1 HX + y, x2 HX + y, x3 H x, 
xq ++x. Consequently, both L and M mapto x2y + xy2 = xy(x + y). The restriction map 
for I’,., is determined on generators by x1 H x + y, x2 H x, x3 H x, x4 H x + y, and from 
this L and M map to zero. The other assertions are similar. w 

We now complete our determination of H*( M,,) by showing that (bl=,, 0,O) is in the 

image of restriction from H*(M22). 

. . 
LEMMA 6.2. There is a class h18 in H*(M,,) which restricts to (W3b15,0,0) in 

H*( V4)0ff*(W4)OH*(v3/3). 

Proof: From [6] we have that the centralizer of the involution ABCD in M,, is the 
other subgroup V4 : Y4 c V4 : d,. From Theorem (3.2) of [l] we have that the invariants 
under this action of 9, give the ring F,Cal,w,,y,,~,l(l,y,,~,,y~~,) where 
y4 = oz(az + a:), ys = a4(04 + Wgol) and b, = o1 b6 + a4G3. Here the notation is that of 
Table 2. Also, the polynomial submodule F2[y4, y,](l, W3, b,) is multiple image, but the 
rest is not. Now b15 = S8b7 + SlOys + Si2W3 + S14~1, and multiplying by G3 gives the 
existence of a class in H*(Sy12(M22)) which restricts to the desired class. But such a class is 
manifestly stable under all the double coset conditions so it comes from H*(M22). n 

At this stage the only problem is whether b15 is a multiple image class or not. To verify 
that it must be we check the structure of the Bockstein spectra1 sequence. First we apply the 
derivation Sq’ to H*(Mz2). The resulting homology groups form a ring and the mod(4) 
Bockstein is a derivation on this ring. The resulting homology groups admit 8s as 
a derivation, and so on. In the limit we have only a single copy of E/2 in degree zero. 

There are three keys to this calculation. The first is the observation that 

since, as we have pointed out Sq’(y,) = G:, Sq’ (yg) = y:. The second is the observation 
that we can write 

FzCdt,d6,d,ld, = ff2Cd4,d~l(d,,d6d7,d:,dsd:,...,d’;,dsdl;,...) 

and Sq’(d,d’,) = dj7+ ‘. Hence, the resulting S ’ homology of this piece is simply q 

E,C& &I(&> &d,). 

On the other hand, Sq’(n6) = d7, Sql(nlO) = d4d7 + G3ns + y5n6, and from this it follows 
that some Bockstein of (W3xg + y5n6) = n12, so n 1 2 d8 is an integral class since n, 2 is. Also, 
we recall, in particular the result Sq ’ (W x 3 12 + y5n10) = y:n6 from the introduction. USing 

these partial calculations and the other Sq l’s for [F2 [a, b, c, dlY5 as listed in the introduction 
we reduce ourselves to X15, X16, Xl8 and X24. 

Through dimension 20 we are uncertain of whether (b 1 5, x 1 5, 0) or ( bl 5, 0,O) occurs in 
the image of restriction. We are also uncertain of Sq ’ on xl 5, x 1 6, xl 8. But, modulo that 
uncertainty we obtain that the following classes generate the Sq’ homology in dimensions 
13-20 at most. There may be further Sq l’s among these generators which cut down the Sq’ 
homology by removing further pairs of elements in successive dimensions, but there are no 
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other possible homology generators. 

dim13 14 15 16 17 18 19 20 

a14 b15? @3b15 alId* de& 

a7& d"8 w3x15 a& 

x15 x16 *3x14 X18 @3x16 

a& W3d; 

(G3%3 + Ys%)ds nlzds 

Here we know dadI is integral and consequently must be in the image of some Bockstein. 
Also, /?,(a,di) = G3di and some Bockstein of a,d8 = di. Thus the only way that the 
Bockstein spectral sequence can work out is if both b15 and xl5 are present which can only 
happen if (b15, 0,O) is in the image of restriction. 

This completes our discussion of H*(M&. 
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