## Problems, November 2008

Problem 1. Let $D$ be the 10 -element set consisting of the digits $0,1,2$, $3,4,5,6,7,8$, and 9 . How many ordered pairs $(A, B)$ are there such that the union of the sets $A$ and $B$ is equal to $D$ ? One such ordered pair has $A=\{0,1,2,5,6,8,9\}$ and $B=\{0,1,3,4,7,9\}$.

Problem 2. Let $A B C$ be an isosceles triangle which is right-angled at $C$. Let $P$ and $Q$ be points on the hypotenuse $A B$, with $P$ and $Q$ coming in the order shown in the picture below. Suppose that $\angle Q C P$ has measure $45^{\circ}$. Show that $(A P)^{2}+(B Q)^{2}=(P Q)^{2}$.


Problem 3. Alphonse and Beti are mathematicians who collaborate in separating people from their money. Alphonse is blindfolded. The mark (whose name is Mark) is asked to remove 5 cards from a standard 52 -card deck, and hand them back to Beti. Beti gives one of the 5 cards to Mark (keeping 4). Mark puts that card back in the deck, and shuffles thoroughly. Beti then arranges the remaining 4 cards in a neat face-up row. Beti gives 10 to 1 odds that Alphonse can find the card that Mark had put in the deck. Alphonse takes off the blindfold, looks at the 4 cards in the row Beti made, and identifies the missing card. How can this be done?

Problem 4. Find all ordered triples $(a, b, c)$ of positive integers such that $b$ divides $2 a+1, c$ divides $2 b+1$, and $a$ divides $2 c+1$. (A correct list is not enough: one must show that the list is complete.)

[^0]
[^0]:    (C) 2008 by Andrew Adler
    http://www.pims.math.ca/education/math_problems/
    http://www.math.ubc.ca/~adler/problems/

