Problems, February 2007

Problem 1. Let $M=(1 / 2,1 / 2)$. Find points A and B on the curve $y=1 / x^{2}$ such that M is the midpoint of the segment $A B$.

Problem 2. Simplify $1 \cdot 2+2 \cdot 3+3 \cdot 4+4 \cdot 5+\cdots+99 \cdot 100$. (We could find the answer by doing a long calculation, or by writing a program to do it. That's not what is wanted here.)

Problem 3. (a) Show how to divide the set $\{1,2,3,4, \ldots, 98,99\}$ into three subsets (not necessarily of the same size) so that the sum of the numbers in all three sets will be the same. (b) For what positive integers n can the same task be accomplished with the set $\{1,2,3,4, \ldots, n-1, n\}$?

Problem 4. Find (with proof) the smallest possible value of $x y+y z+x z$, given that x, y, and z are real numbers such that $x^{2}+y^{2}+z^{2}=1$.

Problem 5. Let $N=(3+2 \sqrt{2})^{512}+(3-2 \sqrt{2})^{512}$. What is the rightmost decimal digit of N ?

