
Solutions to January 2006 Problems

Problem 1. A convex quadrilateral is split into four parts by joining the mid-
points of opposite sides as in the picture below. If three of the parts, going
counterclockwise, have area 10, 11, and 12, what is the area of the fourth part?
(The picture is not drawn to scale.)
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?

Solution. We prove a preliminary result that is interesting in itself.

Lemma (The Varignon Parallelogram). Let ABCD be a quadrilateral, and let
P , Q, R, and S be the midpoints of sides AB, BC, CD, and DA. Then PQRS
is a parallelogram.

Proof. Look at the left-hand picture in the diagram below. (The quadrilateral
is drawn convex, but the lemma holds even if ABCD is not convex.) Draw the
diagonals of ABCD.
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Look first at 4ABC. The line PQ joins the midpoints of two sides of the
triangle, and therefore PQ is parallel to AC. The same argument, applied to
4ACD, shows that SR is parallel to AC.

Thus PQ and SR are both parallel to AC, and therefore to each other. In
the same way, we can show that QR is parallel to PS. It follows that PQRS
is a parallelogram. It is called the Varignon parallelogram of the quadrilateral
ABCD.

Now return to the original problem, and look at the middle picture above.
Let the areas of the triangles in the picture be a, b, c, d, and x as shown. Since
PQRS is a parallelogram, its diagonals divide PQRS into four triangles of equal
area, so the triangles whose areas are labeled “x” really do have the same area.

Because (left-hand picture) P and Q bisect two sides of 4ABC, the area
of 4PBQ is one-quarter of the area of 4ABC. Similarly, the area of 4SRD
is one-quarter of the area of 4ACD. Add. We find that b + d is one-quarter
of the area of the whole quadrilateral. Similarly, so is a + c. It follows that
b+ d = a+ c, and therefore

(b + x) + (d+ x) = (a+ x) + (c+ x).

In our case, b+ x = 12, d+ x = 10, and a+ x = 11. The region we were curious
about has area c+ x, which is 12 + 10− 11, that is, 11.
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Another Way. Look at the right-hand picture. Let p, q, r, and s be the areas
of the triangles as shown. Note that for example the triangles whose areas
are labeled “p” really do have the same area, since they have equal bases and
heights.

The areas of “opposite” quadrilaterals add up to p + q + r + s. It follows
that 12 + 10 is equal to 11 plus the area of our target quadrilateral. That
quadrilateral therefore has area 11. Exactly the same argument works if any
point in the interior of ABCD is joined to the midpoints of the sides!

Comment. The first solution is much more complicated than the second. But
as a bonus it shows that PQRS is a parallelogram. Besides being shorter and
more natural, the second solution easily generalizes. Let n be an integer, and
let A be a 2n-sided (planar) polygon. Let O be any point in the interior of A.
Divide A into 2n quadrilaterals by joining O to the midpoints of the sides of A.
The second argument given above shows that if we know the areas of 2n− 1 of
the quadrilaterals, we can easily compute the area of the remaining one. There
is no result close to this for polygons with an odd number of sides.

Problem 2. A triangle is isosceles. Suppose there is a line that divides the
triangle into two isosceles triangles. What can we conclude about the angles of
the original triangle?

Solution. For a while, we will not worry about the fact that the original triangle
is isosceles, and will not even draw it as isosceles. It can be dangerous to rely on
exact drawings, because it is all too easy to miss a possibility—almost everyone
did.

If a line divides a triangle into two triangles, the line must pass through a
vertex, say A. Let the other two vertices be B and C. Let P be a point on BC,
and suppose that AP divides 4ABC into two isosceles triangles.

Maybe both ∠APB and ∠APC are 90◦. If not, at least one of them is
greater than 90◦. We can if necessary interchange the labels B and C to make
sure that ∠APB is greater than or equal to 90◦. Since 4APB is isosceles, and
∠APB is “big,” it follows that PA = PB.

Now look at4APC. This triangle is isosceles, so there are three possibilities
to examine: (i) PC = PA, (ii) CA = CP , and (iii) AP = AC.
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Case (i): Look at the left-hand diagram above. We do some “angle-chasing.”
Let ∠ABP = x (this is short for the awkward but officially correct “Let the
degree measure of ∠ABP be x”).

Since PA = PB, we have ∠PAB = x. But since the angles of a triangle
add up to 180◦, we have ∠APB = 180− 2x, and therefore ∠APC = 2x.

The angles of 4APC add up to 180◦. One of them is 2x, and the other two
are equal. It follows that each is 90− x. Thus ∠BAC = x+ (90− x) = 90.
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There is a more elegant way of seeing this. Note that PC = PA = PB.
Imagine drawing the circle with center P and BC as a diameter. This circle
passes through A, and therefore by a standard result ∠BAC is a right angle.

Finally, we use the fact that 4ABC is isosceles. Since ∠BAC is “big” we
must have AB = AC. Thus each of ∠ABC and ∠ACB has measure 45◦.

Case (ii): Now look at the right-hand picture above. Again, do a routine
“angle chase.” Exactly as before, we get that ∠APC = 2x. Since CA = CP ,
we get ∠PAC = 2x, and therefore ∠BAC = 3x and ∠ACB = 180− 4x.

But 4ABC is isosceles. There are two possibilities. Maybe AB = AC.
Then x = 180− 4x, so x = 36, and the other two angles of 4ABC are 36◦ and
108◦.

Or maybe BA = BC. Then 3x = 180− 4x, so x = 180/7, and the other two
angles of 4ABC are each 540/7 degrees. (We can not have CA = CB, since
angles CAB and CBA are respectively 3x and x, so they can not be equal.)

Case (iii): (The picture is not drawn.) We find by an angle chase that ∠PCA =
2x and ∠CAP = 180− 4x.

Now use the fact that 4ABC is isosceles. As usual, there are several possi-
bilities to examine. We can not have AB = AC, since ∠ABC and ∠ACB are
respectively x and 2x, so can not be equal.

Maybe BA = BC. Then 180−3x = 2x, so x = 36, and the other two angles
are each 72◦. Finally, maybe CA = CB. No, that is not possible, for any one
of several reasons. For one thing, PB = CA, so CB > CA.

To sum up, the possibilities are 45–90–45, 36–108–36, 540/7–180/7–540/7,
and 72–36–72.

We are not quite finished! We need to check that each of the four types
of triangle can indeed be split into two isosceles triangles. For that, we need
to reverse the arguments used above. That is quite simple. For example, let
4ABC have ∠ABC = ∠BCA = 36◦ (and therefore ∠CAB = 108◦). Draw line
AP so that P is on the segment BC and ∠PAB = 36◦. It is easy to verify that
the line AP splits 4ABC into two isosceles triangles.

Another Way. Instead of splitting a “large” isosceles triangle, we can start with
a “small” one and analyze how we can glue an isosceles triangle to it to make a
“large” one. The detailed case by case analysis is more or less the same as the
analysis given above, but a little more efficient.

Problem 3. Find the sum of all the four-digit numbers all of whose digits are
odd.

Solution. There are five odd digits, and therefore 54 four-digit numbers all of
whose digits are odd. In principle, we could list the 625 numbers and add up.
With a programmable calculator, we could write a program to list and add.
“Technology” is wonderful.

Thinking is better. Imagine listing and adding, with the addition done in
the usual paper and pencil way, except that we will not do any “carrying,” since
that introduces an unnecessary complication.
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Look first at the problem of adding the units digits. There are 53 of our
numbers that have a 1 as their units digit, 53 that have a 3 as their units digit,
and so on. So the units digits add up to

53(1 + 3 + 5 + 7 + 9), that is, to 25× 53.

Similarly, the tens digits add up to 25 × 53. But each tens digit counts the
number of 10’s in the answer, so the tens digits contribute 10× 25 × 53 to the
sum. Similarly, the hundreds digits contribute 100×25×53, and the thousands
digits contribute 1000× 25× 53.

Thus the full sum is
(1111)(25)(53). (1)

If we wish, we can now calculate. The numerical answer is 3471875.
Comment. In many ways the numerical answer is less satisfactory than Expres-
sion 1. For the expression has structure, and the idea and expression easily gen-
eralize to variant problems, such as the sum of all six-digit numbers whose digits
are all odd, or all six-digit numbers whose digits are chosen from {2, 3, 5, 7}.

The calculator often turns a structured object into a meaningless jumble of
digits. Mathematics is not calculation, it is the discovery and exploitation of
structure. In applied problems, we do indeed (ultimately) want a numerical
answer. As much as possible, however, we should leave numerical computation
to the end. We should not attack problems with calculator in one hand, unless
they are essentially trivial and we are racing to finish a test.
Another Way. We break up our four-digit numbers into pairs that have a “nice”
sum. Note that 1+9 = 3+7 = 5+5 = 10. In general, if g is a digit, let g = 10−g.
So 1 = 9, 3 = 7, 7 = 3, and 5 = 5.

If the number x has decimal representation abcd, where a, b, c, and d are the
digits of x from left to right, let x be the number that has decimal representation
abcd. Note that for any of our four-digit numbers x, x = x. Informally, call
x the partner of x. So the partner of the partner of x is x, a good thing for
domestic harmony.

We calculate x+ x, using ordinary paper and pencil addition. The result is
11110. And almost everybody’s partner is different from herself/himself. Only
5555 is his own partner. Thus there are (54− 1)/2 couples, and each couple has
sum 11110, with only the lonely 5555 left out. The required sum is therefore

(11110)
(

54 − 1
2

)
+ 5555.

Now we can calculate, but maybe we should simplify first. Note that 11110 =
2× 5555, so the above expression simplifies to 5555× 54.

There is a somewhat neater way of doing the same thing. Colour our 54

numbers red, and let their sum be S. Make a new collection of our numbers,
and colour them blue. Then the sum of all the numbers, red and blue, is 2S.
Pair off all the numbers, by pairing any coloured x with the x of the opposite
colour. Now everyone has a partner, there are 54 pairs, each with sum 11110.
It follows that 2S = 11110× 54, so S is easy to find.
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Comment. Or else we could pair off any of our four-digit numbers x with the
number 11110− x. Since we saw earlier that x + x = 11110, this is the same
pairing as the one described above. The only trouble with this way of defining
the pairing is that we then need to show that if all the digits of x are odd, then
so are all the digits of 11110− x, in other words that 11110− x is one of our
numbers. This is not hard, just look at the usual subtraction process.

Some people sent in solutions that assumed that when our numbers are
arranged in increasing order, they form an arithmetic progression. They then
applied a version of the usual formula for the sum of an arithmetic progression.
If we use the fact that there are 625 elements in our sequence, we actually end
up with the right answer—for the wrong reason.

Our numbers do not form an arithmetic progression. True, at the start come
1111, 1113, 1115, 1117, 1119. But the next term in the arithmetic progression
that starts with 1111 and jumps by 2’s is 1121, which is not one of our numbers.
So the theorem that gives the sum of an arithmetic progression can not be
applied directly. However, the pairing idea in the usual proof of the formula
for the sum of an arithmetic progression does work, and was used in the second
argument above.

Problem 4. Let S be a collection of 2006 points in the same plane.
(a) Show that there is a point P in S, and a line passing through P , such

that 500 of the points in S are on one side of the line and 1505 are on the other
side.

(b) Suppose that no 3 points of S lie on the same line. Show that for any
P in S there is a line through P such that 1002 of the points in S are on one
side of the line and 1003 are on the other side.

Solution. (a) Draw a line ` so that all points of S are on one side of `. There
are many such lines, since S is a finite set.

Move ` very slowly, parallel to itself, toward S. After a while, the line `
passes through a point P of S. Stop temporarily, and count. Obviously we are
not finished, there are 0 points on one side of ` and 2005 on the other. The
procedure is illustrated in the left-hand diagram of the picture below, with a lot
fewer than 2006 points.

P ``
`

`

Keep going, until ` goes through the “next” point P of S. Stop briefly, and
count. Now there is 1 point of S on one side of `, and 2004 on the other. Keep
going, until ` goes through the “next” point of S. Now there are 2 points of S
on one side of ` and 2003 on the other. Keep going. After a while, we reach a
point P of S such that the line ` passes through P and has 500 points of S on
one side, and 1505 on the other.
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Unfortunately, the above argument is wrong. It is possible that as we move
the line `, it passes simultaneously through 2 or more points of S, indeed maybe
through all 2006 of them. If the moving line ` can pass simultaneously through
more than one point of S, then the one by one parade of points that was key to
the argument breaks down.

We can rescue the argument. The set S only has 2006 points. So only
finitely many lines pass through two (or more) points of S. In particular, there
are only finitely many slopes of lines that pass through two or more points of S.
In fact, the number of such slopes is between 1 and (2006)(2005)/2, since there
are (2006)(2005)/2 ways to choose two points from the 2006.

Let m be any number other than these finitely many slopes. Instead of
starting with an arbitrary line `, start with a line ` of slope m such that all
points of S are on one side of `, then use the “moving line” argument given
above. As ` moves, its slope does not change. The moving line can not pass
through more than 1 point of S at a time, since if it did it would have one of
the forbidden slopes. So the argument now works.

Comment. The argument can be extended to show that there are at least two
points P , and a line ` through P , such that there are 500 points of S on one
side of ` and 1505 on the other. We can not do better. If all points of S lie on
one line, then there are exactly two points P of S for which a line through P
splits our set in the required way (there are always infinitely many lines that
work).

There is nothing special about 2006 and 500. Let S be a finite set of points,
with say n elements, and let a be an integer such that 0 ≤ a ≤ n − 1. Then
there is a point P of S, and a line ` through P , such that a of the points of S
lie on one side of ` and n− a− 1 lie on the other side.

(b) Look at the right-hand picture above. Get a large thin pane of glass, and
draw a line ` on it. Colour the glass on one side of ` transparent red, and on the
other side transparent blue. Place the glass on top of the plane that contains
our set S, with the line ` “passing” through P . If we are very lucky, there are
1002 points of S on the red side of `, and 1003 on the blue side (or the other
way around), and we are finished.

But probably we are not this lucky. For definiteness suppose that there are
1001 or fewer points on the red side. Start rotating the line ` (and thus the
pane of glass) slowly counterclockwise about P . As ` rotates, points of S other
than P will for an instant appear on `, and then move from “red” to “blue,” or
vice-versa.

Since no three of the points of S lie on a line, the points move from one
colour to the other colour one at a time. Note that even though we started with
more blue points than red points, the number of red points could decrease for
a while, or change in complicated ways.

But by the time we have rotated through 180◦, all previously red points have
become blue, and all previously blue points have become red. So the number
of red points has changed from 1001 or fewer to 1004 or more. Since points
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changed colour one at a time, there must have been a time when there were
exactly 1002 red points. This completes the proof.

Problem 5. You have 11 thin straight sticks. The length of each stick is a
whole number of cm, and each stick has length 88 cm or less. Show that 3 of
these sticks can be arranged to form a triangle. (Three positive numbers are
the sides of a triangle if the sum of any two is greater than the third. The fact
that 11 divides 88 has no bearing on the solution, I think.)

Solution. The argument uses repeatedly the following fact. Let x, y, and z be
positive. Then there is a triangle with sides x, y, and z if and only if x+ y > z,
y + z > x, and z + x > y. More informally, three positive numbers form the
sides of a triangle if and only if the sum of any two is greater than the third.
The proof is not hard.

Suppose that no three of the sticks can be arranged to form a triangle. Call
the lengths of the sticks a1, a2, a3, . . . , a10, a11, where

a1 ≤ a2 ≤ a3 ≤ · · · ≤ a10 ≤ a11.

It is obvious that a1 ≥ 1 and a2 ≥ 1. Now look at a3. Since a1 ≤ a2 ≤ a3,
we have a3 + a2 > a1 and a3 + a1 > a2. So if a2 + a1 > a3, then the sticks of
length a1, a2, and a3 form a triangle. But we are assuming that no three sticks
form a triangle. It follows that a3 ≥ a2 + a1.

Now look at a4. Since a2 ≤ a3 ≤ a4, we have a4 + a3 > a2 and a4 + a2 > a3.
So if a3 + a2 > a4, then the sticks of length a2, a3, and a4 form a triangle. But
we are assuming that no three sticks form a triangle. It follows that a4 ≥ a3+a2.

The same argument works in general. Suppose that 2 ≤ n ≤ 11. Since
an−2 ≤ an−1 ≤ an, we have an−1 + an > an−2 and an + an−2 > an−1. So
if an−1 + an−2 > an, then the sticks of length an−2, an−1, and an form a
triangle. But we are assuming that no three sticks form a triangle. It follows
that an ≥ an−1 + an−2.

We conclude that if no three sticks form a triangle, then an ≥ an−1 + an−2

for any n such that 2 ≤ n ≤ 11. Now we can start to calculate. We have a1 ≥ 1
and a2 ≥ 1. If no three sticks form a triangle, then a3 ≥ a2 + a1, so a3 ≥ 2.

But if no three sticks form a triangle, then a4 ≥ a3 + a2, so a4 ≥ 3. And if
no three sticks form a triangle, then a5 ≥ a4 + a3, so a5 ≥ 5. Similarly, a6 ≥ 8,
a7 ≥ 13, a8 ≥ 21, a9 ≥ 34, a10 ≥ 55, and a11 ≥ 89.

We have shown that if no three sticks form a triangle, then the longest stick
has length greater than or equal to 89. But we were told that every stick has
length 88 or less. So there are three sticks that form a triangle.

Comment. Fibonacci strikes again! (See the solution to Problem 2 of Decem-
ber 2005.) In general, define the Fibonacci sequence by F0 = 0, F1 = 1, and for
every n > 1, Fn = Fn−1 + Fn−2. The argument above shows that if we have n
sticks of integer length, where n ≥ 3, and every stick has length less than Fn,
then some three of the sticks form a triangle.

We perhaps mistakenly specified that every stick has integer length. The
proper condition is to say that the length x of any stick satisfies 1 ≤ x < 89,

7



without insisting that it be an integer. The argument given above shows that if
we have 11 of these sticks, then some three of them form a triangle. The problem
specified integer lengths in fear that the number 89 would scream Fibonacci to
someone familiar with the Fibonacci sequence, and give the argument away.

Here is an interesting related problem. You have 11 thin straight sticks.
Each stick has length greater than or equal to 1 cm, and the sum of the lengths
of the sticks is less than 1024 cm. Show that you can use some of these sticks
to make a polygon.

Problem 6. The school cafeteria offers three equally awful lunch choices A,
B, and C. Every day, Zoë remembers how bad the immediately previous lunch
was, and flips a fair coin to decide between the other two options.

On day 1 of school she had lunch A. Find the probability that she has lunch A
on day 100.

Solution. Let pn be the probability that she has lunch A on day n. We want
to find p100. It is good to get some experimental evidence: we calculate p2, p3,
p4, and so on for a while, in the hope of seeing what is going on.

The problem has some symmetry: it is clear that, on any day, lunches B and
C are equally likely. We don’t have perfect three-fold symmetry because Zoë
had A on the first day.

Start calculating. We have p1 = 1. On day 2, she must have B or C, so
p2 = 0. On day 3, whether she had B or C the day before she chooses A with
probability 1/2, so p3 = 1/2.

Now look at day 4. If she has A on day 3 (probability 1/2) then she does
not have A on day 4. If she has B or C (probability 1/2) then the probability
she has A on day 4 is 1/2. So the probability she has A on day 4 is (1/2)(1/2).
It follows that p4 = 1/4.

A similar calculation gives p5 = 3/8, p6 = 5/16, p7 = 11/32, p8 = 21/64,
and p9 = 43/128. With some patience, we could continue all the way to p100.
But the prospect is unattractive, and the task becomes very unpleasant if for
example we want p1000.

We will first find an expression for pn+1 in terms of pn. This just records in
a general way the work we did when we calculated the first few pk.

On day n, the probability that Zoë eats A is pn, so the probability she
doesn’t eat A is 1 − pn. Thus the probability that she eats A the next day is
(1/2)(1− pn). We have obtained the Fundamental Recurrence

pn+1 = (1/2)(1− pn). (2)

If we stare at the numbers pn for a while, a possible pattern may leap out.
The denominators (so far) are increasing powers of 2, indeed the denominator
of pn seems to be 2n−2, at least if we don’t pay attention to p1 and p2. And
if the denominator is 2n−2, then the numerator (so far) alternates between
(2n−2 +1)/3 and (2n−2−1)/3. We could prove by Mathematical Induction that
this is in fact correct for all n. But that is probably overly fancy. We will avoid
Induction.
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The pn seem to approach 1/3. That is reasonable, maybe even obvious. The
choice that Zoë made on day 1 should exert less and less influence as time goes
on.

Maybe we should find out how close to 1/3 our numbers p1, p2, p3, . . . , p9

are. Let qn = 1/3 − pn. We get q1 = −2/3, q2 = 1/3, q3 = −1/6, q4 = 1/12,
q5 = −1/24, q6 = 1/48, q7 = −1/96, q8 = 1/192, and q9 = −1/384.

There is (so far) an obvious pattern. The qn look like a geometric progression
with common ratio −1/2. If the qn indeed form such a geometric progression,
then qn = (4/3)(−1/2)n for all n, or, if you prefer, (4/3)/2n if n is even and
(−4/3)/2n if n is odd.

The pattern is so striking that it is maybe pig headed to doubt it. But
mathematics is about certainty. Anyway, if things are really this simple, it
should be simple to prove it.

Comment. The distinction between guessing that a certain pattern continues
and seeing that it does can be subtle. For the qn of this problem, and even the
pn, the structure jumps out if we compute half a dozen terms. Someone who
says that the result is obvious may be right—but only if she is a professional
mathematician.

We work first with qn, mainly because geometric progressions are familiar.
After that will come arguments that work with pn directly. Let’s express the
Fundamental Recurrence in terms of the qn. We have

qn =
1
3
− pn and therefore pn =

1
3
− qn.

Similarly, pn+1 = 1/3 − qn+1. Substituting in the Fundamental Recurrence 2,
we obtain

1
3
− qn+1 = (1/2)(1− (

1
3
− qn)) =

1
3

+ (1/2)qn.

Simplify: we obtain
qn+1 = (−1/2)qn.

So indeed the sequence q1, q2, q3, . . . is a geometric sequence with common ratio
−1/2. Since q1 = −2/3, we conclude that qn = (4/3)(−1/2)n for all n. It
follows that for all n

pn =
1
3

(
1− (4)(−1)n

2n

)
.

Thus p100 = (1/3)(1− 1/298): p100 is indeed very close to 1/3.

Another Way. The first argument relied on experimentation to “guess” what
the pattern might be. (I prefer the fancier word “conjecture,” since “guess”
sounds too random.) Then came a proof that the conjectured formula is indeed
correct for all n. We will now produce a formula directly.

In the Fundamental Recurrence 2, get rid of fractions. We get 2pn+1 = 1−pn.
The “1” in this formula is troublesome. It would be nice to get rid of it, maybe
by rewriting the Fundamental Recurrence as 2(pn+1 + a) = −(pn + a) for some

9



constant a. The formula would then become 2pn+1 = −3a − pn, so we want
−3a = 1, that is, a = −1/3.

We have reached 2(pn+1 − 1/3) = −(pn − 1/3). It is now “natural” to
let tk = pk − 1/3. We get the recurrence tn+1 = (−1/2)tn, so the tk form a
geometric progression with common ratio −1/2. The rest is like the first proof.

Note that instead of calculating values of pn for various n, hoping something
interesting would turn up, we fooled around with the Fundamental Recurrence,
hoping for something interesting.

Another Way. Quite often, differences of terms of a sequence behave more nicely
than the sequence itself. So it may be a good idea to look at the sequence p2−p1,
p3−p2, p4−p3, and so on. For brevity let dn = pn+1−pn. Calculate, using the
known values for the first few pk. We get d1 = −1, d2 = 1/2, d3 = −1/4, d4 =
1/8, d5 = −1/16, d6 = 1/32, d7 = −1/64, d8 = 1/128. Interesting! Let’s assume
temporarily that the pattern continues. We would then have dk = −2(−1/2)k.
Note that

(p2 − p1) + (p3 − p2) + (p4 − p3) + · · ·+ (pn − pn−1) = pn − p1

or equivalently,
pn − p1 = d1 + d2 + d3 + · · ·+ dn−1.

There is nothing magical about the process: we got the dk by taking differences,
so once we know the dk we can get the pk by adding. The geometric series
d1 +d2 +d3 + · · ·+dn−1 is easy to sum up, and we quickly get a formula for pn.

It remains to check that the pattern does indeed continue. Note from the
Fundamental Recurrence that

pn+2 = (1/2)(1− pn+1)

(we have just used n+ 1 instead of n.) Also,

pn+1 = (1/2)(1− pn).

Subtract and simplify. We get

pn+2 − pn+1 = (−1/2)(pn+1 − pn)

or equivalently
dn+1 = (−1/2)dn.

The dk do indeed form a geometric progression with common ratio (−1/2), and
we are finished.

Another Way. The next approach is close in spirit to the calculations that got
us to p9, and to the approach taken by Hank Duan of Pinetree Secondary. We
have p3 = 1/2. From Formula 2, p4 = (1/2)(1− 1/2) = 1/2− 1/4. Now (crucial
point) do not simplify, because here simplifying tends to hide the structure.
From Formula 2, we obtain

p5 = (1/2)(1− p4) = (1/2)(1− (1/2− 1/4)) =
1
2
− 1

4
+

1
8
.
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Again, do not simplify. From Formula 2, we obtain

p6 = (1/2)(1− p5) = (1/2)(1− (1/2− 1/4 + 1/8)) =
1
2
− 1

4
+

1
8
− 1

16
.

Again, do not simplify. From Formula 2, we obtain

p7 = (1/2)(1−p6) = (1/2)(1− (1/2−1/4+1/8−1/16)) =
1
2
− 1

4
+

1
8
− 1

16
+

1
32
.

To find p8, we find (1/2)(1− p7). A glance at the expression for p7 shows that

p8 =
1
2
− 1

4
+

1
8
− 1

16
+

1
32
− 1

64
,

and it is clear that the pattern continues. We are not saying that there seems
to be a pattern and hope it continues. The way we generate the expressions for
the pn shows that the pattern must continue. In general (at least when n ≥ 3)

pn =
1
2
− 1

4
+

1
8
− 1

16
+ · · ·+ (−1)n−3 1

2n−2
.

So pn is the sum of a geometric progression with first term 1/2 and common
ratio −1/2. By a standard formula, the sum is

(1/2)
1− (−1/2)n−2

1− (−1/2)
.

The above expression simplifies to (1/3)(1− (−1)n−2/2n−2).

Another Way. The previous arguments work directly with probabilities. We
can instead work in a more basic way, with a tree that represents Zoë’s lunch
history. Similar arguments were given by Russell Vanderhout of Fraser Heights
Secondary and Paul Trakulhoon of Magee Secondary. The tree that traces the
history up to day 5 is drawn below.

AA AAAA

A

AA
AA

B BB BB

B

BBB
B

CCC C C

CCC
C

C

It is clear that at any level n there will be 2n−1 “nodes,” all equally likely. Let
A(n) be the number of “A” nodes at level n. The probability Zoë has lunch A
on day n is A(n)/2n−1. We will find an expression for A(n).

There are 2n−1 −A(n) “non-A” nodes at level n. Each gives birth to one A
node at level n+ 1, and therefore

A(n+ 1) = 2n−1 −A(n). (3)
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Calculate, starting from A(3) = 2. By the Node Recurrence Formula 3, A(4) =
4− 2. Again by the Node Recurrence Formula, A(5) = 8− (4− 2) = 8− 4 + 2.
And A(6) = 16 − 8 + 4 − 2. There is an obvious pattern, which clearly must
continue.

So A(n) is the sum of an n − 2 term geometric series with first term 2n−2

and common ratio −1/2. This sum is given by a standard formula.
I think it would be better to treat the cases n odd and n even separately.

Using the Node Recurrence Formula, or by a direct count, we can show that
A(n+ 2) = 2n−1 +A(n). Then we proceed more or less like before, but jumping
by 2’s. This avoids the unpleasant minus signs.

Comment. Every day after lunch Zoë is in one of three states, (digesting) A, B,
or C. Given that she is in a certain state after lunch today, the probability she
is in various states tomorrow is given by certain transition probabilities. This is
a simple example of a Markov Chain. Markov chains have many applications,
from business to physics.

The problem can be generalized in various ways. We can stick to 3 meal
choices, but change the transition probabilities associated with each of A, B,
and C. This general problem can be solved, but the solution uses a fair amount
of machinery.

Or else we can keep the symmetry of the original problem, but with m meals
available. If Zoë has one of them today, tomorrow she chooses one of the others,
with all choices equally likely. Here the analysis is more or less the same as the
ones we gave for the case m = 3.

c© 2006 by Andrew Adler
http://www.pims.math.ca/education/math problems/
http://www.math.ubc.ca/~adler/problems/
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