
Assignment 1

- Due: Wednesday April 2 @ 5pm.
- Remember to fill in and attach a plagiarism coversheet.
- Put in the assignment box in the Maths department.
- 1. Consider the dynamical system on the circle S^1 defined by:

$$\theta_{n+1} = \alpha \; \theta_n.$$

Describe the dynamics of the system for values of $\alpha \geq 0$. Please include discussion of:

- fixed points (and their nature *i.e.* attracting, repelling or neutral),
- periodic points (and their nature),
- "sensitive dependence on initial conditions",

and anything else you feel is relevant.

2. Consider the dynamical system on the circle S^1 defined by:

$$\theta_{n+1} = 2 \; \theta_n.$$

- Prove that the set of all periodic points of this system is dense in the circle S^1 .
- Also prove that the set of points that are not eventually periodic is also dense in S^1 .

3. An experimental investigation of rates of convergence: Using a computer investigate (numerically) how quickly an orbit is attracted to a fixed point.

Procedure: Each of the functions listed below has a fixed point and the orbit of $x_0 = 0.2$ is attracted to it. For each function listed below use a computer (I have provided an applet on the subject homepage) to compute the orbit of $x_0 = 0.2$ until it reaches the fixed point — or within 10^{-5} of it.

For each function you should make note of:

- (a) the location of the fixed point, p,
- (b) the derivative at the fixed point, f'(p),
- (c) is the fixed point attracting or neutral,
- (d) the number of iterations it took for the orbit of 0.2 to reach (within 10^{-5}) p.

The functions in question are:

(a)
$$f(x) = x^2 + 0.25$$

(b)
$$f(x) = x^2$$

(c)
$$f(x) = x^2 - 0.26$$

(d)
$$f(x) = x^2 - 0.75$$

(e)
$$f(x) = 0.4x(1-x)$$

(f)
$$f(x) = x(1-x)$$

(g)
$$f(x) = 1.6x(1-x)$$

(h)
$$f(x) = 2x(1-x)$$

(i)
$$f(x) = 2.4x(1-x)$$

(j)
$$f(x) = 3x(1-x)$$

$$(k) f(x) = 0.4 \sin x$$

(1)
$$f(x) = \sin x$$

Results: When you have collected the data, compare each of the functions. Describe what you observe — in particular the relationship between the speed of convergence and f'(p).