Assignment 1

1. Consider the dynamical system on the circle S^1 defined by:

$$\theta_{n+1} = \alpha \ \theta_n.$$

Describe the dynamics of the system for values of $\alpha \geq 0$. Please include discussion of:

- fixed points (and their nature *i.e.* attracting, repelling or neutral),
- periodic points (and their nature),
- "sensitive dependence on initial conditions",

and anything else you feel is relevant.

Total = 10 marks

• If $\alpha = 0$ then $\theta = 0$ is fixed and all other θ are eventually fixed.

1 mark

• If $0 < \alpha < 1$ then $\theta_n = \alpha^n \theta_0$ for all $n \in \mathbb{Z}^+$. Hence all orbits converge to $\theta = 0$ and $\theta = 0$ is an attracting fixed point.

1 mark

• If $\alpha = 1$ then all $\theta \in S^1$ are fixed.

1 mark

- If $\alpha > 1$ then things are more complicated. For $\alpha \in \mathbb{N}$ things are as I describe them below. For more general α one needs to be quite a bit more careful. I was happy to give full marks for what follows. For those of you that did carefully investigate non-integer α , I generally gave full marks.
- First find fixed points this is equivalent to solving:

$$\begin{aligned} \alpha\theta &= \theta \mod 1\\ \alpha\theta - \theta &= k \in \mathbb{Z} \end{aligned}$$

Hence the fixed points are given by $\theta_* = \frac{k}{\alpha - 1}$. Since $\theta \in [0, 1)$, it follows that there are $\lfloor \alpha - 1 \rfloor$ (*i.e.* the smallest integer less than $\alpha - 1$) fixed points.

If $\alpha = 3.5$ (for example) the fixed points are $\{0, 1/2.5, 2/2.5\} = \{0, 0.4, 0.8\}$. Since $\theta_{n+1} = \alpha \theta_{n+1}$ the derivative is α at all points, and so all fixed points are repelling.

3 marks

• Find points of period *n*:

$$\alpha^n \theta = \theta \mod 1$$

$$\alpha^n \theta - \theta = k \in \mathbb{Z}$$

Hence the period-*n* periodic points are given by $\frac{k}{\alpha^{n-1}}$, and so there are $\lfloor \alpha^n - 1 \rfloor$ such points. Since $\theta_{n+1} = \alpha \theta_{n+1}$ the derivative is α at all points, and so all periodic points are repelling.

2 marks

• To see "sensitive dependence on initial conditions" pick two points $x, y \in S^1$ such that $|x_0 - y_0| = \varepsilon > 0$. Under *n*-applications of the mapping $|x_n - y_n| =$ $|\alpha^n x_0 - \alpha^n y_0| = \alpha^n \varepsilon$. Provided $\alpha > 1$, we can blow up the initial error, ε , by repeated iterations, to make it as big as we want — so it can reach a size comparable with the system size. So two points that start close together will have orbits that diverge by a large amount after some (finite) number of iterations.

2 marks

$$\triangleleft \, \triangleleft \, \diamond \, \triangleright \, \triangleright$$

2. Consider the dynamical system on the circle S^1 defined by:

$$\theta_{n+1} = 2 \ \theta_n.$$

- Prove that the set of all periodic points of this system is dense in the circle S^1 .
- Also prove that the set of points that are *not* eventually periodic is also dense in S^1 .

Total = 5 marks

• We first have to find all the periodic points. This means we find have to solve

$$\theta_n = \theta_0$$

which is the same as solving:

$$2^{n}\theta = \theta \mod 1$$
$$2^{n}\theta - \theta = k \in \mathbb{Z}$$
$$\theta = \frac{k}{2^{n} - 1}.$$

Since $\theta \in [0, 1)$, the variable k takes the values $\{0, 1, \dots, 2^n - 1\}$.

1 mark

Assignment 1 -Solutions

Dynamical Systems and Chaos -620-341 2003 Assignment 1 - Solutions

• The points of period n are evenly spaced around the circle, and so they partition the circle into arcs of length $1/(2^n - 1)$. If we pick any two points on the circle $x \neq y$ such that $|x - y| = \varepsilon > 0$, then we can pick n sufficiently large so that $1/(2^n - 1) < \varepsilon$. This means that one of the endpoints of the arcs (that partition the circle) must lie between x and y. Hence there is a periodic point that lies between x and y. Since x and y were arbitrary choices, no matter which two (distinct) points we pick there will always be a periodic point between them. Hence periodic points are dense in S^1 .

2 marks

- We see that the set of periodic points are all rational numbers. If we instead choose some irrational point, then we can prove that it is not-periodic.
 - Pick $\varphi \in S^1 \setminus \mathbb{Q}$. If φ is periodic or eventually periodic then $\exists n, m$ such that $2^n \varphi = 2^m \varphi \mod 1$.

$$2^{n}\varphi - 2^{m}\varphi = k \in \mathbb{Z}$$
$$\varphi = \frac{k}{2^{n} - 2^{m}}$$

which contradicts the irrationality of φ and so it cannot be periodic nor eventually periodic.

- We can now proceed by noting that the irrational numbers are dense in the reals and so by the above construction, the irrational numbers for a dense set of non-periodic points in S^1 .
- Or if we want a little more detail (not assuming any density results) Pick $x < y \in S^1$. By writing (and truncating) the decimal expansion of x and y we can find two rational numbers, $\bar{x} < \bar{y}$, between x and y. We can construct an irrational number ϕ between \bar{x} and \bar{y} :

$$\phi = \bar{x} + (\bar{y} - \bar{x})/\sqrt{2}$$

We know (from above) that this point is neither periodic nor eventually periodic. Since our choices of x and y were arbitrary, it follows that the set of aperiodic points is dense in S^1 .

2 marks

$\triangleleft \ \Diamond \ \diamond \ \triangleright \ \triangleright$

3. An experimental investigation of rates of convergence: Using a computer investigate (numerically) how quickly an orbit is attracted to a fixed point.

Procedure: Each of the functions listed below has a fixed point and the orbit of $x_0 = 0.2$ is attracted to it. For each function listed below use a computer (I have

provided an applet on the subject home page) to compute the orbit of $x_0 = 0.2$ until it reaches the fixed point — or within 10^{-5} of it.

For each function you should make note of:

- (a) the location of the fixed point, p,
- (b) the derivative at the fixed point, f'(p),
- (c) is the fixed point attracting or neutral,
- (d) the number of iterations it took for the orbit of 0.2 to reach (within 10^{-5}) p.

The functions in question are:

- (a) $f(x) = x^2 + 0.25$
- (b) $f(x) = x^2$
- (c) $f(x) = x^2 0.26$
- (d) $f(x) = x^2 0.75$
- (e) f(x) = 0.4x(1-x)
- (f) f(x) = x(1-x)
- (g) f(x) = 1.6x(1-x)
- (h) f(x) = 2x(1-x)
- (i) f(x) = 2.4x(1-x)
- (j) f(x) = 3x(1-x)
- (k) $f(x) = 0.4 \sin x$
- (l) $f(x) = \sin x$

Results: When you have collected the data, compare each of the functions. Describe what you observe — in particular the relationship between the speed of convergence and f'(p).

Total = 5 marks

• We first construct a table of all the relevant information:

mical	cal Systems and Chaos — 620-341 2003 Assignme					Solutions
	Function	fixed point	f'(x)	iterations		
	$x^2 + 0.25$	0.5	1	99987		
	x^2	0	0	3		
	$x^2 - 0.26$	-0.214142	-0.428285	9		
	$x^2 - 0.75$	-0.5	-1	lots!		
	0.4x(1-x)	0	0.4	11		
	x(1-x)	0	1	99985		
	1.6x(1-x)	0.375	0.4	13		
	2x(1-x)	0.5	0	5		
	2.4x(1-x)	0.58333	-0.4	11		
	3x(1-x)	0.66666	-1	lots! (548240689)		
	$0.4\sin x$	0	0.4	11		
	$\sin x$	0	1	lots!		

Dynan ns

2 marks

- From the table we immediately see that the closer the absolute value of the derivative is to 1 the longer the system takes to converge to the fixed point.
 - If the derivative is 0 then convergence is very fast less than 10 steps
 - If |f'(x)| < 1 then convergence is fast around 10 steps.
 - If $f'(x) = \pm 1$ then the convergence is slow but there appears to be a lot of variation. Both $\sin(x)$ and $x^2 - 0.75$ seem to take an eternity to converge — this is because around x = 0, $\sin(x)$ is extremely well approximated by $\sin(x) \approx x$. Similarly around x = -0.5, $x^2 - 0.75$ is well approximated by -1-x. Whereas the other functions with derivative 1 are less linear.

3 marks