Assignment 1

1. Consider the dynamical system on the circle S^{1} defined by:

$$
\theta_{n+1}=\alpha \theta_{n}
$$

Describe the dynamics of the system for values of $\alpha \geq 0$. Please include discussion of:

- fixed points (and their nature - i.e. attracting, repelling or neutral),
- periodic points (and their nature),
- "sensitive dependence on initial conditions",
and anything else you feel is relevant.

$$
\text { Total }=10 \text { marks }
$$

- If $\alpha=0$ then $\theta=0$ is fixed and all other θ are eventually fixed.

1 mark

- If $0<\alpha<1$ then $\theta_{n}=\alpha^{n} \theta_{0}$ for all $n \in \mathbb{Z}^{+}$. Hence all orbits converge to $\theta=0$ and $\theta=0$ is an attracting fixed point.

1 mark

- If $\alpha=1$ then all $\theta \in S^{1}$ are fixed.

1 mark

- If $\alpha>1$ then things are more complicated. For $\alpha \in \mathbb{N}$ things are as I describe them below. For more general α one needs to be quite a bit more careful. I was happy to give full marks for what follows. For those of you that did carefully investigate non-integer α, I generally gave full marks.
- First find fixed points - this is equivalent to solving:

$$
\begin{aligned}
\alpha \theta & =\theta \bmod 1 \\
\alpha \theta-\theta & =k \in \mathbb{Z}
\end{aligned}
$$

Hence the fixed points are given by $\theta_{*}=\frac{k}{\alpha-1}$. Since $\theta \in[0,1)$, it follows that there are $\lfloor\alpha-1\rfloor$ (i.e. the smallest integer less than $\alpha-1$) fixed points.
If $\alpha=3.5$ (for example) the fixed points are $\{0,1 / 2.5,2 / 2.5\}=\{0,0.4,0.8\}$. Since $\theta_{n+1}=\alpha \theta_{n+1}$ the derivative is α at all points, and so all fixed points are repelling.

- Find points of period n :

$$
\begin{aligned}
\alpha^{n} \theta & =\theta \quad \bmod 1 \\
\alpha^{n} \theta-\theta & =k \in \mathbb{Z}
\end{aligned}
$$

Hence the period- n periodic points are given by $\frac{k}{\alpha^{n}-1}$, and so there are $\left\lfloor\alpha^{n}-1\right\rfloor$ such points. Since $\theta_{n+1}=\alpha \theta_{n+1}$ the derivative is α at all points, and so all periodic points are repelling.

2 marks

- To see "sensitive dependence on initial conditions" pick two points $x, y \in S^{1}$ such that $\left|x_{0}-y_{0}\right|=\varepsilon>0$. Under n-applications of the mapping $\left|x_{n}-y_{n}\right|=$ $\left|\alpha^{n} x_{0}-\alpha^{n} y_{0}\right|=\alpha^{n} \varepsilon$. Provided $\alpha>1$, we can blow up the initial error, ε , by repeated iterations, to make it as big as we want - so it can reach a size comparable with the system size. So two points that start close together will have orbits that diverge by a large amount after some (finite) number of iterations.

2 marks

$$
\triangleleft \triangleleft \diamond \triangleright \triangleright
$$

2. Consider the dynamical system on the circle S^{1} defined by:

$$
\theta_{n+1}=2 \theta_{n}
$$

- Prove that the set of all periodic points of this system is dense in the circle S^{1}.
- Also prove that the set of points that are not eventually periodic is also dense in S^{1}.

$$
\text { Total }=5 \text { marks }
$$

- We first have to find all the periodic points. This means we find have to solve

$$
\theta_{n}=\theta_{0}
$$

which is the same as solving:

$$
\begin{aligned}
2^{n} \theta & =\theta \quad \bmod 1 \\
2^{n} \theta-\theta & =k \in \mathbb{Z} \\
\theta=\frac{k}{2^{n}-1} . &
\end{aligned}
$$

Since $\theta \in[0,1)$, the variable k takes the values $\left\{0,1, \ldots, 2^{n}-1\right\}$.
1 mark

- The points of period n are evenly spaced around the circle, and so they partition the circle into arcs of length $1 /\left(2^{n}-1\right)$. If we pick any two points on the circle $x \neq y$ such that $|x-y|=\varepsilon>0$, then we can pick n sufficiently large so that $1 /\left(2^{n}-1\right)<\varepsilon$. This means that one of the endpoints of the arcs (that partition the circle) must lie between x and y. Hence there is a periodic point that lies between x and y. Since x and y were arbitary choices, no matter which two (distinct) points we pick there will always be a periodic point between them. Hence periodic points are dense in S^{1}.

2 marks

- We see that the set of periodic points are all rational numbers. If we instead choose some irrational point, then we can prove that it is not-periodic.
- Pick $\varphi \in S^{1} \backslash \mathbb{Q}$. If φ is periodic or eventually periodic then $\exists n, m$ such that $2^{n} \varphi=2^{m} \varphi \bmod 1$.

$$
\begin{aligned}
2^{n} \varphi-2^{m} \varphi & =k \in \mathbb{Z} \\
\varphi & =\frac{k}{2^{n}-2^{m}}
\end{aligned}
$$

which contradicts the irrationality of φ and so it cannot be periodic nor eventually periodic.

- We can now proceed by noting that the irrational numbers are dense in the reals and so by the above construction, the irrational numbers for a dense set of non-periodic points in S^{1}.
- Or if we want a little more detail (not assuming any density results) - Pick $x<y \in S^{1}$. By writing (and truncating) the decimal expansion of x and y we can find two rational numbers, $\bar{x}<\bar{y}$, between x and y. We can construct an irrational number ϕ between \bar{x} and \bar{y} :

$$
\phi=\bar{x}+(\bar{y}-\bar{x}) / \sqrt{2}
$$

We know (from above) that this point is neither periodic nor eventually periodic. Since our choices of x and y were arbitary, it follows that the set of aperiodic points is dense in S^{1}.

2 marks

```
\triangleleft \triangleleft\diamond\triangleright 
```

3. An experimental investigation of rates of convergence: Using a computer investigate (numerically) how quickly an orbit is attracted to a fixed point.
Procedure: Each of the functions listed below has a fixed point and the orbit of $x_{0}=0.2$ is attracted to it. For each function listed below use a computer (I have reaches the fixed point - or within 10^{-5} of it.

For each function you should make note of:
(a) the location of the fixed point, p,
(b) the derivative at the fixed point, $f^{\prime}(p)$,
(c) is the fixed point attracting or neutral,
(d) the number of iterations it took for the orbit of 0.2 to reach (within 10^{-5}) p.

The functions in question are:
(a) $f(x)=x^{2}+0.25$
(b) $f(x)=x^{2}$
(c) $f(x)=x^{2}-0.26$
(d) $f(x)=x^{2}-0.75$
(e) $f(x)=0.4 x(1-x)$
(f) $f(x)=x(1-x)$
(g) $f(x)=1.6 x(1-x)$
(h) $f(x)=2 x(1-x)$
(i) $f(x)=2.4 x(1-x)$
(j) $f(x)=3 x(1-x)$
(k) $f(x)=0.4 \sin x$
(l) $f(x)=\sin x$

Results: When you have collected the data, compare each of the functions. Describe what you observe - in particular the relationship between the speed of convergence and $f^{\prime}(p)$.

$$
\text { Total }=5 \text { marks }
$$

- We first construct a table of all the relevant information:

Function	fixed point	$f^{\prime}(x)$	iterations
$x^{2}+0.25$	0.5	1	99987
x^{2}	0	0	3
$x^{2}-0.26$	$-0.214142 \ldots$	$-0.428285 \ldots$	9
$x^{2}-0.75$	-0.5	-1	lots!
$0.4 x(1-x)$	0	0.4	11
$x(1-x)$	0	1	99985
$1.6 x(1-x)$	0.375	0.4	13
$2 x(1-x)$	0.5	0	5
$2.4 x(1-x)$	$0.58333 \ldots$	-0.4	11
$3 x(1-x)$	$0.66666 \ldots$	-1	lots! (548240689)
$0.4 \sin x$	0	0.4	11
$\sin x$	0	1	lots!

2 marks

- From the table we immediately see that the closer the absolute value of the derivative is to 1 the longer the system takes to converge to the fixed point.
- If the derivative is 0 then convergence is very fast - less than 10 steps
- If $\left|f^{\prime}(x)\right|<1$ then convergence is fast - around 10 steps.
- If $f^{\prime}(x)= \pm 1$ then the convergence is slow - but there appears to be a lot of variation. Both $\sin (x)$ and $x^{2}-0.75$ seem to take an eternity to converge - this is because around $x=0, \sin (x)$ is extremely well approximated by $\sin (x) \approx x$. Similarly around $x=-0.5, x^{2}-0.75$ is well approximated by $-1-x$. Whereas the other functions with derivative 1 are less linear.

