Assignment 2

1. Using the java applets on the course homepage, calculate the locations of the first 6 superstable orbits of:

- The logistic map $F_{\mu}(x)=\mu x(1-x)$, and
- The sine map $S_{\mu}(x)=\mu \sin (\pi x)$

A point x_{0} is a superstable stable n-cycle if it has $\left(F^{n}\right)^{\prime}\left(x_{0}\right)=0$. Since both these maps have a unique maximum at $x=1 / 2$, the superstable n-cycles occur at μ values where the n-cycle contains the point $x=1 / 2$. See next page for an example.

Remember - these maps undergo period doubling bifurcations, so the first 6 superstable orbits will have periods $1,2,2^{2}, \ldots 2^{5}$. It is important that your estimates are very accurate - as many decimal places as you can get! Take your time and be careful. You will need to set "Discard first" and "Show next" to around 100,000 in order to get good results.

Call these μ values for the logistic and sine maps $l_{0}, l_{1}, \ldots l_{5}$ and $s_{0}, s_{1}, \ldots s_{5}$ (respectively). To check you have the right idea $-l_{0}=2$ and $s_{0}=1 / 2$. These numbers are expected to have the following behaviour:

$$
\begin{aligned}
& l_{n} \approx l_{\infty}-A \delta_{l}^{n} \\
& s_{n} \approx s_{\infty}-B \delta_{s}^{n}
\end{aligned}
$$

Tabulate your data and estimate δ_{l} and δ_{s}. What do your results suggest?
Hint: If $l_{n} \approx l_{\infty}-A \delta_{l}^{n}$ then

$$
\begin{aligned}
l_{n}-l_{n-1} & \approx A \delta^{n-1}(\delta-1) \\
\frac{l_{n}-l_{n-1}}{l_{n-1}-l_{n-2}} & \approx \delta
\end{aligned}
$$

$$
\text { Total }=5 \text { marks }
$$

- Here is a table of the data:

Logistic	l_{n}	$l_{n}-l_{n-1}$	$\frac{l_{n}-l_{n-1}}{l_{n-1}-l_{n-2}} \approx \delta$	$1 / \delta$
l_{0}	2	\circ	\circ	\circ
l_{1}	3.2360679	1.2360679	\circ	\circ
l_{2}	3.4985616	0.2624937	0.212361878	4.70894311
l_{3}	3.5546406	0.056079	0.213639413	4.680784251
l_{4}	3.5666678	0.0120272	0.214468874	4.662681256
l_{5}	3.56924347	0.00257567	0.214153751	4.669542294
Sine				
s_{0}	0.5	\circ	\circ	\circ
s_{1}	0.77773396	0.27773396	\circ	\circ
s_{2}	0.84638216	0.0686482	0.24717251	4.045757354
s_{3}	0.86145038	0.01506822	0.219499127	4.555826767
s_{4}	0.86469419	0.00324381	0.21527493	4.645222747
s_{5}	0.86538966	0.00069547	0.214399117	4.664198312

4 marks

- For both of these maps the number $1 / \delta$ appears to be converging to around $4.67 \ldots$... It seems to be the same for both the Logistic and Sine maps.

1 mark

- This number is called a Feigenvalue and is thought to be the same for all unimodal maps with a quadratic maximum.

$$
1 / \delta=4.66920160910299067185320382046620161725818557747576863 \ldots
$$

2. Let Σ_{N} denote the space of sequences whose entries are the integers $0,1, \ldots, N-1$.
(a) For all $s, t \in \Sigma_{N}$ define

$$
d[s, t]=\sum_{k=0}^{\infty} \frac{\left|s_{k}-t_{k}\right|}{N^{k}}
$$

Prove that this function is a metric on Σ_{N}, and find the maximum distance between any two points in Σ_{N}.
(b) Let σ_{N} be the shift map on Σ_{N} (defined in the usual way). How many fixed points does σ_{N} have? How many points are fixed by σ_{N}^{k} ?

$$
\text { Total }=5 \text { marks }
$$

- In order for this function to be a metric, it must be positive, reflexive and obey the triangle inequality.
- We require $d[s, t]=d[t, s]$. This follows because $|a-b|=|b-a|$:

$$
\begin{aligned}
d[s, t] & =\sum_{k=0}^{\infty} \frac{\left|s_{k}-t_{k}\right|}{N^{k}} \\
& =\sum_{k=0}^{\infty} \frac{\left|t_{k}-s_{k}\right|}{N^{k}} \\
& =d[t, s]
\end{aligned}
$$

as required.

- We need $d[s, t] \geq 0$ - Since $d[s, t]$ is the sum of non-negative terms, it cannot be negative.
- We need $d[s, t]=0 \leftrightarrow s=t$. A sum of non-negative terms is equal to zero if and only if each term in the sum is equal to zero. This means that $d[s, t]=0$ if and only if $s_{k}=t_{k}$ for all $k \geq 0$. And $s_{k}=t_{k}$ for all $k \geq 0$ if an only if $s=t$.
- Finally for all $s, t, u \in \Sigma_{N}$, we need that $d[s, t] \leq d[s, u]+d[u, t]$. For any three real numbers, s_{k}, t_{k} and u_{k} the following is true:

$$
\left|s_{k}-t_{k}\right| \leq\left|s_{k}-u_{k}\right|+\left|u_{k}-t_{k}\right|
$$

Dividing this statement by N_{k} and then summing over k gives:

$$
\sum_{k=0}^{\infty} \frac{\left|s_{k}-t_{k}\right|}{N^{k}} \leq \sum_{k=0}^{\infty} \frac{\left|s_{k}-u_{k}\right|}{N^{k}}+\sum_{k=0}^{\infty} \frac{\left|u_{k}-t_{k}\right|}{N^{k}}
$$

And we are done.
2 marks

- We need to maximise the distance function:

$$
d[s, t]=\sum_{k=0}^{\infty} \frac{\left|s_{k}-t_{k}\right|}{N^{k}} .
$$

The maximum value $\left|s_{k}-t_{k}\right|$ can take is $(N-1)$, so the distance function must be bounded above by:

$$
d[s, t] \leq \sum_{k=0}^{\infty} \frac{N-1}{N^{k}}=(N-1) \sum_{k=0}^{\infty} N^{-k}=(N-1) \frac{1}{1-1 / N}=N .
$$

We now need to show that we can actually obtain this maximum. That is, there are s and t such that $d[s, t]=N$. An obvious choice is:

$$
s=(0,0,0,0, \ldots) \quad \text { and } \quad t=(N-1, N-1, N-1, \ldots)
$$

- If a point $s=\left(s_{0} s_{1} s_{2} \ldots\right) \in \Sigma_{N}$ is fixed by σ_{N} then:

$$
\left(s_{0} s_{1} s_{2} \ldots\right)=\sigma_{n}(s)=\left(s_{1} s_{2} s_{3} \ldots\right)
$$

which implies that $s_{k}=s_{k-1}=s_{k-2}=\cdots=s_{1}=s_{0}$. Hence the only points that are fixed under σ_{N} are those that consist only of a single repeating digit - there are N such sequences:

$$
(0,0,0, \ldots) \quad(1,1,1, \ldots) \quad \ldots \quad(N-1, N-1, N-1 \ldots)
$$

1 mark

- If a point $s=\left(s_{0} s_{1}, \ldots\right) \in \Sigma_{N}$ is fixed by σ_{N}^{k}, then

$$
\left(s_{0} s_{1} s_{2} \ldots\right)=\sigma_{n}(s)=\left(s_{k} s_{k+1} s_{k+2} \ldots\right)
$$

Hence we must have

$$
\begin{array}{rlll}
s_{k}=s_{0} & s_{k+1}=s_{1} & \cdots & s_{2 k-1}=s_{k-1} \\
s_{2 k}=s_{k}=s_{0} & s_{2 k+1}=s_{k+1}=s_{1} & \ldots &
\end{array}
$$

And so s must consist of a repeating block of k digits:

$$
s=\left(s_{0} s_{1} \ldots s_{k-1} s_{0} s_{1} \ldots s_{k-1} \ldots\right)=\left(\overline{s_{0} s_{1} \ldots s_{k-1}}\right)
$$

There are N^{k} such sequences.

