## 5 Bifurcations — summary

**Definition. Bifurcation** — A forking, or division into two branches. (from Webster's Revised Unabridged Dictionary (1913))

**Definition.** A 1-parameter family of functions,  $F_{\lambda}$  undergoes a saddle-node bifurcation or tangent bifurcation at parameter value  $\lambda_0$  if  $\exists$  an open interval I and an  $\varepsilon > 0$  such that

1. if  $\lambda_0 - \varepsilon < \lambda < \lambda_0$  then  $F_{\lambda}$  has no fixed points in I.

- 2. if  $\lambda = \lambda_0$  then  $F_{\lambda}$  has a unique fixed point in I which is neutral.
- 3. if  $\lambda_0 > \lambda > \lambda_0 + \varepsilon$  then  $F_{\lambda}$  has two fixed points in I, one attracting and one repelling.

Note that the inequalities need not be this way around, we could equally as well have:

1 if  $\lambda_0 > \lambda > \lambda_0 + \varepsilon$  then  $F_{\lambda}$  has no fixed points in I.

 $\bar{3}$  if  $\lambda_0 - \varepsilon < \lambda < \lambda_0$  then  $F_{\lambda}$  has two fixed points in I, one attracting and one repelling.

Also note that periodic points also undergo saddle node bifurcations; if the point has period n, then simply replace  $F_{\lambda}$  in the above definition with  $F_{\lambda}^{n}$ .



Typically a saddle node bifurcation occurs when a function (such as  $x^2 + x$ ) pushes down through the line y = x and its point of contact is tangent (and so has f'(x) = 1). Thus while the function lies above y = x there are no fixed points (in the region), it has a single neutral fixed point when the curves touch, and finally two fixed points appear when the curve cuts through y = x.

**Definition.** A 1-parameter family of functions,  $F_{\lambda}$  undergoes a *period doubling bifurcation* at parameter value  $\lambda_0$  if  $\exists$  an open interval I and an  $\varepsilon > 0$  such that

1. if  $\lambda_0 - \varepsilon < \lambda < \lambda_0 + \varepsilon$  then  $F_{\lambda}$  has a unique fixed point,  $p_{\lambda}$  in I.

2. if  $\lambda_0 - \varepsilon < \lambda < \lambda_0$  then  $F_{\lambda}$  has no 2-cycles in I and the fixed point,  $p_{\lambda}$ , is attracting.

- 3. if  $\lambda_0 > \lambda > \lambda_0 + \varepsilon$  then  $F_{\lambda}$  has a unique 2-cycle,  $q_{\lambda}^1, q_{\lambda}^2$  in *I*. This 2-cycle is attracting while the fixed point,  $p_{\lambda}$  is repelling.
- 4. As  $\lambda \to \lambda_0^+$  we have  $q_\lambda^1, q_\lambda^2 \to p_\lambda$

As was the case for saddle node bifurcations, it is possible that the inequalities are the other way around — decreasing  $\lambda$  gives rise to the attracting 2-cycle, while increasing  $\lambda$  gives the attracting fixed point and no 2-cycle.

## Notes:

- 1. In saddle node bifurcation the neutral fixed point splits into two fixed points, while in period double bifurcation the 2-cycle is born from the fixed point, but the fixed point continues to exist.
- 2. The attracting fixed point in period doubling bifurcation becomes repelling at the same time as the attracting 2-cycle is born at the fixed point.
- 3. Cycles may also undergo a period doubling bifurcation; an n-cycle gives birth to a 2n-cycle.

Typically we find that a period doubling bifurcation occurs when the graph of f(x) is perpendicular to y = x at the fixed point — *i.e.*  $f'(p_{\lambda}) = -1$ .



Since the fixed point is attracting for smaller  $\lambda$  and repelling for larger  $\lambda$  we must have graphs that look something like those above.

Since we expect that a 2-cycle has been born as  $\lambda$  passes through  $\lambda_0$  it makes sense to examine a graph of  $f^2(x)$ . We first note that  $(f^2)'(p_{\lambda}) = (f'(p_{\lambda}))^2 = 1$ . Hence for  $\lambda < \lambda_0$  we expect  $(f^2)' < 1$  and for  $\lambda > \lambda_0$  we expect  $(f^2)' > 1$ . This produces graphs looking something like:



This shows how an attracting 2-cycle is born from a repelling fixed point as the function  $f^2(x)$  twists through the line y = x.