3 Fixed points - summary

Theorem (Fixed point existence).
Let $F:[a, b] \mapsto[a, b]$ be a continuous function. Then F has at least one fixed point in $[a, b]$.
Definition. Let x_{*} be a fixed point of a differentiable function $f(x)$.

- If $\left|f^{\prime}\left(x_{*}\right)\right|<1$ then we call x_{*} an attracting fixed point.
- If $\left|f^{\prime}\left(x_{*}\right)\right|>1$ then we call x_{*} a repelling fixed point.
- If $\left|f^{\prime}\left(x_{*}\right)\right|=1$ then we call x_{*} a neutral fixed point.

Theorem (Attracting fixed point theorem).

Let x_{*} be an attracting fixed point of a differentiable function $f(x)$ (so that $\left|f^{\prime}\left(x_{*}\right)\right|<1$). Then there exists an interval, I, which contains x_{*} as an interior point for which the following is true:

- if $x \in I$ then $f^{n}(x) \in I$ for all $n>0$, and
- for all $x \in I, f^{n}(x) \longrightarrow x_{*}$ as $n \rightarrow \infty$.

Theorem (Repelling fixed point theorem).
Let x_{*} be a repelling fixed point of a differentiable function $f(x)$ (so that $\left|f^{\prime}\left(x_{*}\right)\right|>1$). Then there exists an interval, I, which contains x_{*} as an interior point for which the following is true:

- if $x \in I$ and $x \neq x_{*}$ then $\exists n>0$ such that $f^{n}(x) \notin I$.

Note: This tells us that a point near a repelling fixed point will be pushed away after some n iterations. However it does not tell us what will happen subsequently - it could re-enter the interval - this depends on the global properties of the function, rather than on the local properties close to the fixed point.

Neutral fixed points: Neutral fixed points can display quite different behaviour:

- they can be weakly attracting (nearby points converge slowly to the fixed point) such as the point $x=0$ for $f(x)=x-x^{3}$.
- they can be weakly repelling (nearby points are slowly pushed away from the fixed point) - such as the point $x=0$ for $f(x)=x+x^{3}$.
- they can be neither attracting nor repelling - such as $x=0$ for the $f(x)=x-x^{2}$ which is repelling to the left and attracting to the right.

Theorem (Chain rule along a cycle).
Let $\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$ be an n-cycle of the differentiable function $f-$ with $x_{i}=f^{i}\left(x_{0}\right)$. Then

$$
\left(f^{n}\right)^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) f^{\prime}\left(x_{1}\right) \ldots f^{\prime}\left(x_{n-1}\right)
$$

Since the x_{i} lie on a cycle, $\left(f^{n}\right)^{\prime}\left(x_{i}\right)=\left(f^{n}\right)^{\prime}\left(x_{0}\right)$ for all i.
Using this we similarly define attracting, repelling and neutral periodic points, by noting that a periodic point of the function $f(x)$, with period n is a fixed point of the function $f^{n}(x)$.

