1 Problem Set 1 - Orbits

1. Let $F(x)=x^{2}$. Compute the first five points of the orbit of $1 / 2$.
2. Let $F(x)=x^{2}-1$. Compute $F^{2}(x)$ and $F^{3}(x)$.
3. Find all the real fixed points of the following functions
(a) $F(x)=3 x+2$
(b) $F(x)=x^{2}-2$
(c) $F(x)=x^{3}-3 x$
(d) $F(x)=|x|$
(e) $F(x)=x \sin x$
4. Find the fixed points and two-cycles of the function $F(x)=1-x^{2}$.

The following questions correspond to the doubling map,

$$
D:[0,1) \mapsto[0,1)
$$

defined by

$$
D(x)= \begin{cases}2 x & 0 \leq x<1 / 2 \\ 2 x-1 & 1 / 2 \leq x<1\end{cases}
$$

which is equivalent to

$$
D(x)=2 x \quad \bmod 1
$$

5. Discuss the orbits of the following points under $D(x)$:
(a) $x_{0}=0.3$
(b) $x_{0}=0.7$
(c) $x_{0}=1 / 8$
(d) $x_{0}=1 / 7$
(e) $x_{0}=3 / 11$
6. Explain why a computer might have difficulty computing the orbit of $1 / 7$ if you give a decimal expansion (Hint - computers store numbers in binary).
7. Write down an explicit formula for $D^{2}(x)$. Draw a graph of $D(x), D^{2}(x)$ and $D^{3}(x)$.
8. Find all the fixed points of $D(x), D^{2}(x)$ and $D^{3}(x)$. How many fixed points does $D^{n}(x)$ have?

The following questions correspond to the tent map,

$$
T:[0,1] \mapsto[0,1]
$$

defined by

$$
T(x)= \begin{cases}2 x & 0 \leq x \leq 1 / 2 \\ 2-2 x & 1 / 2<x \leq 1\end{cases}
$$

9. Sketch $T(x)$ - the name of this function should become obvious.
10. Find a formula for $T^{2}(x)$ and sketch this function.
11. Find all fixed points of $T(x)$ and $T^{2}(x)$.
12. What does the graph of $T^{n}(x)$ look like and how many fixed points does it have?
