2 Problem Set 2 - Graphical Analysis

1. Use graphical analysis to describe all orbits of the functions below. Also draw their phase portraits.
(a) $F(x)=2 x$
(b) $F(x)=1-2 x$
(c) $F(x)=x^{2}$
(d) $F(x)=x-x^{2}$
(e) $F(x)=\sin (x)$
2. Use graphical analysis to find all the points whose orbits tend to infinity, i.e. $\left\{x_{0} \mid F^{n}\left(x_{0}\right) \rightarrow \pm \infty\right\}$, for the following functions:
(a) $F(x)=x^{2}+1$
(b) $F(x)= \begin{cases}2 x & 0 \leq x \leq 1 / 2 \\ 2-2 x & 1 / 2<x \leq 1\end{cases}$
3. Completely analyse the orbits of the following functions:
(a) $F(x)=\frac{1}{2} x-2$
(b) $F(x)=|x|$
(c) $F(x)=-x^{5}$
(d) $F(x)=e^{x}$
4. Analyse the orbits of the function $F(x)=|x-2|$. Draw different types of orbits in different colours. You will be able to find fixed points, eventually fixed points, periodic points and eventually periodic points.
5. Let $F(x)=x^{2}-\frac{6}{5}$. Find the fixed point(s) of F. Using the fixed point(s) (or otherwise) find the cycle of prime period 2.
6. Let $F(x)=a x+b$. Answer the following questions about the dynamics of F for various values of a and b :
(a) Find the fixed points of F.
(b) For what values of a and b does F have no fixed points?
(c) For what values of a and b does F have infinitely many fixed points?
(d) For which values of a and b does F have exactly one fixed point?
(e) If F has exactly one fixed point and $|a|<1$, what is the behaviour of all obits under F ? Use graphical analysis.
(f) Similarly, if $|a|>1$ what is the behaviour of all orbits under F ?
(g) If $a=1$ describe the orbits of F for $b<0, b=0$ and $b>0$?
(h) Similarly, if $a=-1$ describe the orbits of F for $b<0, b=0$ and $b>0$?
