3 Problem Set 3 - Fixed and periodic points

1. Find and classify the fixed points of the following functions:
(a) $F(x)=x(1-x)$
(b) $F(x)=3 x(1-x$
(c) $F(x)=\frac{7}{2} x(1-x)$
(d) $F(x)=x^{4}-4 x^{2}+2$
(e) $F(x)=\frac{\pi}{2} \sin x$
(f) $F(x)=\arctan x$
(g) $F(x)=x^{-2}$
2. The point $x=0$ lies on a periodic orbit for each of the following functions. Classify the orbit.
(a) $F(x)=1-x^{2}$
(b) $F(x)=\frac{\pi}{2} \cos x$
(c) $F(x)=-\frac{4}{\pi} \arctan (1+x)$
(d) $F(x)=|x-2|-1$
(e) $F(x)= \begin{cases}x+1 & x \leq \frac{7}{2} \\ 2 x-8 & x>\frac{7}{2}\end{cases}$
3. The doubling function is defined as

$$
D(x)= \begin{cases}2 x & 0 \leq x<\frac{1}{2} \\ 2 x-1 & \frac{1}{2} \leq x<1\end{cases}
$$

Suppose that a point x_{0} lies on a cycle of prime period n. By evaluating $\left(D^{n}\right)^{\prime}$ (or otherwise) classify the orbit.
4. Each of the following functions has a neutral fixed point. Find the fixed point and determine whether it is weakly attracting, weakly repelling or neither. Plot an accurate graph and use graphical analysis to do so.
(a) $F(x)=1 / x$
(b) $F(x)=\tan (x)$
(c) $F(x)=x+x^{2}$
(d) $F(x)=e^{x-1}$
(e) $F(x)=\log |x-1|$
5. Suppose $F(x)$ has a neutral fixed point at x_{0}, with $F^{\prime}\left(x_{0}\right)=1$.
(a) Suppose that $F^{\prime \prime}\left(x_{0}\right)>0$. Is x_{0} weakly attracting, repelling or neither?
(b) Suppose that $F^{\prime \prime}\left(x_{0}\right)<0$. Is x_{0} weakly attracting, repelling or neither?

Use graphical analysis and the concavity of F near x_{0} to support your answer.
6. Suppose $F(x)$ has a neutral fixed point at x_{0}. Further $F^{\prime}\left(x_{0}\right)=1$ and $F^{\prime \prime}\left(x_{0}\right)=0$.
(a) Show that if $F^{\prime \prime \prime}\left(x_{0}\right)>0$ then x_{0} is weakly repelling.
(b) Show that if $F^{\prime \prime \prime}\left(x_{0}\right)<0$ then x_{0} is weakly attracting.

Again use graphical analysis and the concavity of F to support your answer.

