4 Problem Set 4 — Bifurcations

- 1. Each of the following functions undergoes a bifurcation at the given parameter value. In each case use analytic or graphical techniques to identify the type of bifurcation (saddle node or period doubling or neither). Also sketch a "typical" phase portrait for values of the parameter above, at and below the indicated value.
 - (a) $F_{\lambda}(x) = x + x^2 + \lambda$ at $\lambda = 0$
 - (b) $F_{\lambda}(x) = x + x^2 + \lambda$ at $\lambda = -1$
 - (c) $S_{\mu}(x) = \mu \sin x$ at $\mu = 1$
 - (d) $S_{\mu}(x) = \mu \sin x$ at $\mu = -1$
 - (e) $F_c(x) = x^3 + c$ at $c = 2/3\sqrt{3}$
 - (f) $E_{\lambda}(x) = \lambda(e^x 1)$ at $\lambda = -1$
 - (g) $E_{\lambda}(x) = \lambda(e^x 1)$ at $\lambda = 1$

The following questions (2–9) deal with the logistic equation $F_{\lambda}(x) = \lambda x(1-x)$.

- 2. For which values of λ does F_{λ} have an attracting fixed point at x = 0?
- 3. For which values of λ does F_{λ} have a non-zero attracting fixed point?
- 4. Describe the bifurcation that occurs at $\lambda = 1$.
- 5. Sketch the phase portrait and bifurcation diagram near $\lambda = 1$.
- 6. Describe the bifurcation that occurs at $\lambda = 3$.
- 7. Sketch the phase portrait and bifurcation diagram near $\lambda = 3$.
- 8. Describe the bifurcation that occurs at $\lambda = -1$.
- 9. Sketch the phase portrait and bifurcation diagram near $\lambda = -1$.
- 10. Consider $F_{\lambda} = \lambda x x^3$. Show that the 2-cycle given by $\pm \sqrt{\lambda + 1}$ is repelling when $\lambda > -1$.
- 11. Consider the family of functions $F_{\lambda}(x) = x^5 \lambda x^3$. Discuss the bifurcation of 2-cycles that occurs when $\lambda = 2$. Note that this function is an odd function of x for all λ so points of period 2 can be found by solving $F_{\lambda}(x) = -x$.