4 Problem Set 4 - Bifurcations

1. Each of the following functions undergoes a bifurcation at the given parameter value. In each case use analytic or graphical techniques to identify the type of bifurcation (saddle node or period doubling or neither). Also sketch a "typical" phase portrait for values of the parameter above, at and below the indicated value.
(a) $F_{\lambda}(x)=x+x^{2}+\lambda$ at $\lambda=0$
(b) $F_{\lambda}(x)=x+x^{2}+\lambda$ at $\lambda=-1$
(c) $S_{\mu}(x)=\mu \sin x$ at $\mu=1$
(d) $S_{\mu}(x)=\mu \sin x$ at $\mu=-1$
(e) $F_{c}(x)=x^{3}+c$ at $c=2 / 3 \sqrt{3}$
(f) $E_{\lambda}(x)=\lambda\left(e^{x}-1\right)$ at $\lambda=-1$
(g) $E_{\lambda}(x)=\lambda\left(e^{x}-1\right)$ at $\lambda=1$

The following questions (2-9) deal with the logistic equation $F_{\lambda}(x)=\lambda x(1-x)$.
2. For which values of λ does F_{λ} have an attracting fixed point at $x=0$?
3. For which values of λ does F_{λ} have a non-zero attracting fixed point?
4. Describe the bifurcation that occurs at $\lambda=1$.
5. Sketch the phase portrait and bifurcation diagram near $\lambda=1$.
6. Describe the bifurcation that occurs at $\lambda=3$.
7. Sketch the phase portrait and bifurcation diagram near $\lambda=3$.
8. Describe the bifurcation that occurs at $\lambda=-1$.
9. Sketch the phase portrait and bifurcation diagram near $\lambda=-1$.
10. Consider $F_{\lambda}=\lambda x-x^{3}$. Show that the 2-cycle given by $\pm \sqrt{\lambda+1}$ is repelling when $\lambda>-1$.
11. Consider the family of functions $F_{\lambda}(x)=x^{5}-\lambda x^{3}$. Discuss the bifurcation of 2-cycles that occurs when $\lambda=2$. Note that this function is an odd function of x for all λ - so points of period 2 can be found by solving $F_{\lambda}(x)=-x$.

