6 Problem Set 6 - Symbolic Dynamics

1. Find all points in Σ that are distance exactly $1 / 2$ from the point ($0000 \ldots$).
2. Find two points halfway between $(000 \ldots)$ and ($111 \ldots$). Are there any other such points? Why or why not?
3. Decide whether or not the following sets are dense in $[0,1]$.
(a) The set of all numbers in $[0,1]$ except those of the form $1 / 2^{n}, n=1,2,3, \ldots$.
(b) The Cantor middle thirds set.
(c) The compliment of the Cantor middle thirds set.
4. Is the orbit of the point ($01001000100001 \ldots$) under σ dense in Σ ?

The following questions concern the space of sequences on N symbols, Σ_{N}, together with the shift map σ_{N} and the distance function:

$$
d[s, t]=\sum_{k=0}^{\infty} \frac{\left|s_{k}-t_{k}\right|}{N^{k}}
$$

5. Prove that $\sigma_{N}: \Sigma_{N} \mapsto \Sigma_{N}$ is continuous.
6. How many points of prime-period 2 does σ_{N} have?
7. Define the new distance function:

$$
d_{\delta}[s, t]=\sum_{k=0}^{\infty} \frac{\delta_{k}(s, t)}{N^{k}}
$$

where

$$
\delta_{k}(s, t)= \begin{cases}1 & \text { if } s_{k} \neq t_{k} \\ 0 & \text { if } s_{k}=t_{k}\end{cases}
$$

Prove that $d_{\delta}[s, t]$ is also a metric on Σ_{N}.
8. Using $d_{\delta}[s, t]$ what is the maximum distance between two points in Σ_{N} ?

