2 Problem Set 2 - Graphical Analysis

1. Use graphical analysis to describe all orbits of the functions below. Also draw their phase portraits.
(a) $F(x)=2 x$

- There is only one fixed point at $x=0$ and it is repelling:

(b) $F(x)=1-2 x$
- There is only one fixed point at $x=1 / 3$ and it is repelling.

(c) $F(x)=x^{2}$
- There are two fixed points. $x=0$ is an attracting fixed point, and $x=1$ is a repelling fixed point. Also $x=-1$ is an eventually fixed point.

We see that if $0<x_{0}<1$ then $x_{n} \rightarrow 0$. While if $x_{0}>1$ then $x_{n} \rightarrow \infty$. If $x_{0}<0$ but $x_{0}>-1$ then $0<x_{1}<1$ and so $x_{n} \rightarrow 0$. Finally if $x_{0}<-1$ then $x_{1}>1$ and $x_{n} \rightarrow \infty$. Hence

$$
\lim _{n \rightarrow \infty} F^{n}\left(x_{0}\right)= \begin{cases}0 & \text { if }\left|x_{0}\right|<1 \\ 1 & \text { if }\left|x_{0}\right|=1 \\ \infty & \text { if }\left|x_{0}\right|>1\end{cases}
$$

(d) $F(x)=x-x^{2}$

- $F(x)$ has a single fixed point at $x=0$. We also see that $x=1$ is eventually fixed at $x=0$.

(e) $F(x)=\sin (x)$
- Since $F: \mathbb{R} \mapsto[-1,1]$, no matter which $x_{0} \in \mathbb{R}$ we choose, $x_{1} \in[-1,1]$, so we only need to consider points within this interval. It is clear that there is only a single fixed point at $x=0$ and that points converge to it. Numerical experiments show that the convergence is very slow - it is a neutral fixed point (which is weakly attracting).

2. Use graphical analysis to find all the points whose orbits tend to infinity, i.e. $\left\{x_{0} \mid F^{n}\left(x_{0}\right) \rightarrow \pm \infty\right\}$, for the following functions:
(a) $F(x)=x^{2}+1$

- From a graph of the function we see that there are no fixed points and that all iterates tend to infinity. i.e. $\forall x \in \mathbb{R}, F_{n}(x) \rightarrow \infty$.

(b) $F(x)= \begin{cases}2 x & 0 \leq x \leq 1 / 2 \\ 2-2 x & 1 / 2<x \leq 1\end{cases}$
- $F(x)$ maps the interval $[0,1]$ to itself and so all orbits that start in $[0,1]$ will stay within $[0,1]$. On the other hand, if $x_{0}<0$ then 0 is a repelling fixed point and $x_{n} \rightarrow \infty$. Similarly if $x_{0}>1$ then $x_{1}<0$ and $x_{n} \rightarrow \infty$.

3. Completely analyse the orbits of the following functions:
(a) $F(x)=\frac{1}{2} x-2$

- There is only a single fixed point at $x=-4$ and it is attracting. $\forall x \in \mathbb{R}, F^{n}(x) \rightarrow-4$.
(b) $F(x)=|x|$
- For $x \geq 0,|x|=x$, so all $x \geq 0$ are fixed points. If $x<0$ then $|x|=-x>0$, and so all $x<0$ are eventually fixed.
(c) $F(x)=-x^{5}$
- This function has only a single real fixed point at $x=0$. A plot of $F(x)$ shows that points close to 0 have orbits that are attracted to 0 . However points far from 0 will be repelled away from the origin towards $\pm \infty$. This is because of the presence of a repelling 2 -cycle at $\{-1,1\}$. Hence if $\left|x_{0}\right|<1$ then $x_{n} \rightarrow 0$, while if $|x|>1$ then $x_{n} \rightarrow \pm \infty$.

(d) $F(x)=e^{x}$
- A plot of F shows that this function has no fixed point and that $F^{n}(x) \rightarrow \infty$ for all $x \in \mathbb{R}$.

4. Analyse the orbits of the function $F(x)=|x-2|$. Draw different types of orbits in different colours. You will be able to find fixed points, eventually fixed points, periodic points and eventually periodic points.

- We see that at $x=1$ there is the only fixed point. Further we can see from a plot of F that there is a two-cycle at $\{0,2\}$.

If $x_{0}<0$ then $x_{1}>0$ - so let us look at orbits of points >0. If $x_{0}>2$ then $x_{1}=x_{0}-2$. Thus all points in \mathbb{R} will be eventually attracted to the interval $[0,2]$. All odd integers are eventually fixed at $x=1$, while all even integers are eventually periodic at the 2 -cycle $\{0,2\}$. All other points in the interval $(0,2)$ are periodic with period 2 :

$$
F(F(x))=||x-2|-2|=|(2-x)-2|=x \quad \text { for } 0<x<2 .
$$

Hence all points in \mathbb{R} are eventually periodic with period 2 , excepting the odd integers which are eventually fixed.
5. Let $F(x)=x^{2}-\frac{6}{5}$. Find the fixed point(s) of F. Using the fixed point(s) (or otherwise) find the cycle of prime period 2 .

- The fixed points of $F(x)$ are also the fixed points of $F(F(x))$. Hence the solutions of $F(x)-x=0$ are also solutions of $F(F(x))-x=0$. The fixed points are solutions of $x^{2}-x-\frac{6}{5}=0$, which are $\frac{1}{2} \pm \frac{\sqrt{145}}{10}$. If we now turn to the solutions of $F(F(x))=x$, then we already know that $\frac{1}{2} \pm \frac{\sqrt{145}}{10}$ are solutions, and so $x^{2}-x-\frac{6}{5}=$ 0 is a factor of $F(F(x))-x$.

$$
\begin{aligned}
F(F(x))-x & =\left(x^{2}-\frac{6}{5}\right)^{2}-\frac{6}{5}-x \\
& =x^{4}-\frac{12}{5} x^{2}-x+\frac{6}{25} \\
& =\left(x^{2}-x-\frac{6}{5}\right)\left(x^{2}+x-\frac{1}{5}\right)
\end{aligned}
$$

The first factor gives the fixed points, and the second will give the 2-cycle:

$$
p_{ \pm}=-\frac{1}{2} \pm \frac{3 \sqrt{5}}{10}
$$

It is easy to check that $F\left(p_{ \pm}\right)=p_{\mp}$.
6. Let $F(x)=a x+b$. Answer the following questions about the dynamics of F for various values of a and b :
(a) Find the fixed points of F.

- Solving $a x+b=x$, gives $x_{*}=\frac{b}{1-a}$.
(b) For what values of a and b does F have no fixed points?
- If $a \neq 1$ then the system will always have a fixed point. On the other hand, if $a=1$ then the fixed point equation becomes $b=0$. Hence if $a=1, b \neq 0$ then there are no fixed points. While if $a=1$ and $b=0$ then all points are fixed.
(c) For what values of a and b does F have infinitely many fixed points?
- See previous.
(d) For which values of a and b does F have exactly one fixed point?
- If $a \neq 1$ then the system will have exactly one fixed point at $x=\frac{b}{1-a}$.
(e) If F has exactly one fixed point and $|a|<1$, what is the behaviour of all orbits under F ? Use graphical analysis.
- This is much the same as some of the linear examples in question 1 - all orbits tend to the fixed point.
(f) Similarly, if $|a|>1$ what is the behaviour of all orbits under F ?
- Again this is much as question 1 - all orbits tend to infinity (except the fixed point).
(g) If $a=1$ describe the orbits of F for $b<0, b=0$ and $b>0$?
- If $b=0$ then all points are fixed. On the other hand, if $b<0$, then $F(x)<x$ and all orbits tend to $-\infty$. Similarly if $b>0$ then $F(x)>x$ and all orbits tend to $+\infty$.
(h) Similarly, if $a=-1$ describe the orbits of F for $b<0, b=0$ and $b>0$?
- We find a fixed point at $x=b / 2$, and all other points form 2-cycles:

$$
F(F(x))=-(-x+b)+b=x
$$

