3 Problem Set 3 - Fixed and periodic points

1. Find and classify the fixed points of the following functions:
(a) $F(x)=x(1-x)$

- Single neutral fp at $x=0$.
(b) $F(x)=3 x(1-x)$
- Repelling fp at $x=0$ and neutral fp at $x=2 / 3$.
(c) $F(x)=\frac{7}{2} x(1-x)$
- Repelling fp at $x=0$ and $x=5 / 7$.
(d) $F(x)=x^{4}-4 x^{2}+2$
- Has 4 repelling fixed points: $x=2,-1, \frac{1}{2} \pm \frac{\sqrt{5}}{2}$.
(e) $F(x)=\frac{\pi}{2} \sin x$
- Has 3 fp. $x=0$ is a repelling fp. $x= \pm \frac{\pi}{2}$ are attracting.
(f) $F(x)=\arctan x$
- Single neutral fp at $x=0$.
(g) $F(x)=x^{-2}$
- Single repelling fp at $x=1$.

2. The point $x=0$ lies on a periodic orbit for each of the following functions. Classify the orbit.
(a) $F(x)=1-x^{2}$

- Orbit is $\{0,1\}$. It is attracting.
(b) $F(x)=\frac{\pi}{2} \cos x$
- Orbit is $\{0, \pi / 2\}$. It is attracting.
(c) $F(x)=-\frac{4}{\pi} \arctan (1+x)$
- Orbit is $\{0,-1\}$. It is attracting.
(d) $F(x)=|x-2|-1$
- Orbit is $\{0,1\}$. It is neutral.
(e) $F(x)= \begin{cases}x+1 & x \leq \frac{7}{2} \\ 2 x-8 & x>\frac{7}{2}\end{cases}$
- Orbit is $\{0,1,2,3,4\}$. It is repelling.

3. The doubling function is defined as

$$
D(x)= \begin{cases}2 x & 0 \leq x<\frac{1}{2} \\ 2 x-1 & \frac{1}{2} \leq x<1\end{cases}
$$

Suppose that a point x_{0} lies on a cycle of prime period n. By evaluating $\left(D^{n}\right)^{\prime}$ (or otherwise) classify the orbit.

- We first note that $x_{0} \neq 1 / 2$. This is because $1 / 2$ is eventually fixed. Similarly it is not possible that $x_{k}=1 / 2$ for any $k>0$ since it implies that x_{0} is eventually fixed. Now if x_{0} has period n, it implies that $D^{n}\left(x_{0}\right)=x_{0}$. To determine the nature of the periodic point we take the derivative:

$$
\left(D^{n}\right)^{\prime}\left(x_{0}\right)=\prod_{k=0}^{n-1} D^{\prime}\left(x_{k}\right)=2^{n}
$$

since all points except $x=1 / 2$ have gradient 2 . Hence all periodic points are repelling.
4. Each of the following functions has a neutral fixed point. Find the fixed point and determine whether it is weakly attracting, weakly repelling or neither. Plot an accurate graph and use graphical analysis to do so.
(a) $F(x)=1 / x$

- Since $F(F(x))=x$ it follows that all points (except $x=1$ which is fixed) are periodic with period 2. No graph required.
(b) $F(x)=\tan (x)$
- A careful plot of $\tan (x)$ shows that the neutral fixed point at $x=0$ is in weakly repelling:

(c) $F(x)=x+x^{2}$
- A careful plot shows that the neutral fixed point at $x=0$ is in weakly repelling to the right and weakly attracting to the left:

(d) $F(x)=e^{x-1}$
- A careful plot shows that the neutral fixed point at $x=1$ is in weakly repelling to the right and weakly attracting to the left:

(e) $F(x)=\log |x-1|$
- This one is actually quite hard. The function has a neutral fixed point at $x=0$. The derivative at that point is -1 , and so the function behaves like $x \mapsto-x$ near 0 . This means that there is a strong alternating nature to the orbits - they bounce to either side of $x=0$.

Because of this alternating nature, it is a good idea to plot $F^{2}(x)$ - this does not move the fixed point, but changes the gradient to +1 which makes the analysis easier. The easiest way to get an idea of the shape of the $F(F(x))$ close to $x=0$ is to look at the derivatives. Now close to $x=0, F(x) \equiv$
$\log (1-x)$, so:

$$
\begin{aligned}
F(F(x)) & =\log (1-\log (1-x)) \\
\frac{\mathrm{d} F^{2}}{\mathrm{~d} x} & =((1-x)(1-\log (1-x)))^{-1} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} \frac{\mathrm{~d} F^{2}}{\mathrm{~d} x} & =-\frac{\log (1-x)}{(1-x)^{2}(1-\log (1-x))^{2}} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} \frac{\mathrm{~d}}{\mathrm{~d} x} \frac{\mathrm{~d} F^{2}}{\mathrm{~d} x} & =\frac{1-\log (1-x)-2 \log (1-x)^{2}}{(1-x)^{3}(1-\log (1-x))^{3}}
\end{aligned}
$$

So at $x=0,\left(F^{2}\right)^{\prime}=1,\left(F^{2}\right)^{\prime \prime}=0$ and $\left(F^{2}\right)^{\prime \prime \prime}=1$. Hence close to $x=0$ the function is locally $F^{2}(x) \approx x+x^{3} / 6$. Analysis of this shows that $x=0$ is then weakly repelling.
5. Suppose $F(x)$ has a neutral fixed point at x_{0}, with $F^{\prime}\left(x_{0}\right)=1$.
(a) Suppose that $F^{\prime \prime}\left(x_{0}\right)>0$. Is x_{0} weakly attracting, repelling or neither?
(b) Suppose that $F^{\prime \prime}\left(x_{0}\right)<0$. Is x_{0} weakly attracting, repelling or neither?

Use graphical analysis and the concavity of F near x_{0} to support your answer.

- Consider the two graphs below:

The left-hand graph shows a function with $F(0)=0, F^{\prime}(0)=1$ and $F^{\prime \prime}(0)>0$. Graphical analysis shows that the fixed point is attracting on the left and repelling on the right. Similarly the right-hand graph shows the case $F^{\prime \prime}(0)<0$. This graph is attracting on the right and repelling on the left.
6. Suppose $F(x)$ has a neutral fixed point at x_{0}. Further $F^{\prime}\left(x_{0}\right)=1$ and $F^{\prime \prime}\left(x_{0}\right)=0$.
(a) Show that if $F^{\prime \prime \prime}\left(x_{0}\right)>0$ then x_{0} is weakly repelling.
(b) Show that if $F^{\prime \prime \prime}\left(x_{0}\right)<0$ then x_{0} is weakly attracting.

Again use graphical analysis and the concavity of F to support your answer .

- Consider the two graphs below:

The left-hand graph shows a function with $F(0)=0, F^{\prime}(0)=1, F^{\prime \prime}(0)=0$ and $F^{\prime \prime \prime}(0)>0$. Graphical analysis shows that the fixed point is weakly repelling. Similarly the right-hand graph shows the case $F^{\prime \prime \prime}(0)<0$. This graph is weakly attracting.

