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1. Each of the following functions undergoes a bifurcation at the given parameter value.
In each case use analytic or graphical techniques to identify the type of bifurcation
(saddle node or period doubling or neither). Also sketch a “typical” phase portrait for
values of the parameter above, at and below the indicated value.

(a) Fλ(x) = x + x2 + λ at λ = 0

• Fλ has two fixed points at x = ±
√
−λ. Hence there are no fixed points for

λ > 0. F ′ = 2x + 1, so there is a neutral fixed point at x = 0 for λ = 0. For
λ < 0, x = +

√
−λ is a repelling fixed point. For −1 < λ < 0, x = −

√
−λ is

an attracting fixed point. Hence this is a saddle-node bifurcation.

(b) Fλ(x) = x + x2 + λ at λ = −1

• Continuing the previous question, we see that at λ = −1, the fixed point
at x = −

√
λ = −1 becomes neutral with derivative = −1. This suggests

a period doubling bifurcation. Indeed we can check (if we get the algebra
right):

F (F (x)) − x = (λ + x2 + 2x + 2)(λ + x2).

This gives the fixed points at x = ±
√
−λ, and also the location of a two-cycle

at x = −1±
√
−1 − λ. This two-cycle is born at the neutral fixed point when

λ < −1. Hence this is a period doubling bifurcation.

(c) Sµ(x) = µ sinx at µ = 1

• For −1 < µ < 1, a plot of S(x) shows that there is only 1 fixed point at
x = 0. For −1 < µ < 1 it is attracting, while for |µ| > 1 it is repelling. For
µ > 1 two new fixed points are created.

(d) Sµ(x) = µ sinx at µ = −1

• Continuing the previous question, we see that the origin becomes a neutral
fixed point at µ = −1, and that the derivative at x = 0 is −1. This suggests
a period doubling bifurcation. Again, a careful plot of S(S(x)) shows that a
two-cycle is created and that it is attracting.

(e) Fc(x) = x3 + c at c = 2/3
√

3
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• Careful plotting is required for this one. We see that for “large” c, F has only
one intersection with y = x and this occurs for x < 0. Whereas for “small”
c, F has three intersections with y = x, the two new intersections occur for
x > 0 — this suggests a saddle-node bifurcation. Indeed we can check that
at c = 2/3

√
3 that F (x) = x has two solutions, one of which corresponds to

a neutral fixed point:

x3 − x + 2/3
√

3 = (x + 2/
√

3)(x − 1/
√

3)2.

(You can find this by looking for factorisations of the form (x − a)(x − b)2).
Checking the derivative at x = 1/

√
3 shows that this point is a neutral fixed

point. Hence this is a saddle node bifurcation.

(f) Eλ(x) = λ(ex − 1) at λ = −1

• A careful plot shows that there is a fixed point at x = 0, and that this is the
only one. The derivative at this fixed point is simple E ′(0) = λ. Hence at
λ = −1 we expect that there is a period doubling bifurcation. A careful plot
will verify this.

(g) Eλ(x) = λ(ex − 1) at λ = 1

• From the previous question we see that the fixed point at x = 0 becomes
neutral at λ = 1, with derivative 1. For λ < 1 there is a second fixed point
> 0, while for λ > 1 there is a second fixed point < 0.

The following questions (2–9) deal with the logistic equation Fλ(x) = λx(1 − x).
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2. For which values of λ does Fλ have an attracting fixed point at x = 0?

3. For which values of λ does Fλ have a non-zero attracting fixed point?

4. Describe the bifurcation that occurs at λ = 1.

5. Sketch the phase portrait and bifurcation diagram near λ = 1.

• Let us first find the location of the fixed points of F :

F (x) − x = λx(1 − x) − x = x(λ − 1 − λx)

Hence there are fixed points at x = 0 and x = λ−1

λ
. The derivative of F is

F ′ = λ(1 − 2x). Hence the fixed point at x = 0 is attracting for |λ| < 1.

• At the other fixed point shows F ′(λ−1

λ
) = 2−λ. Hence this fixed point is attracting

for 1 < λ < 3.

• For λ 6= 1 there are two fixed points. For λ < 1 the fixed point at x = 0 is
attracting, and it becomes neutral when it coalesces with the other fixed point
when λ = 1. The non-zero fixed point then becomes attracting for λ > 1.

λ

x

1 3

attra
cting

attracting

re
pe

lli
ng

repelling

6. Describe the bifurcation that occurs at λ = 3.

7. Sketch the phase portrait and bifurcation diagram near λ = 3.

• When λ = 3, the fixed point at x = λ−1

λ
becomes neutral with derivative = −1.

This suggests a period doubling bifurcation. Solving F (F (x)) − x = 0 gives:

F (F (x)) − x = λ
(

λx(1 − x)
)(

1 − λx(1 − x)
)

− x

= some algebra

=
(

(λ − 1)x − λx2

)(

λ2x2 − λ(λ + 1)x + (λ + 1)
)

Note — we use the fact that the fixed points of F (x) must also be fixed points
of F (F (x)) to help us factorise the quartic polynomial. This tells us that

(

(λ −
1)x − λx2

)

must be a factor (since this is the polynomial we had to solve to find
the fixed points of F (x)).
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• Solving the second quadratic polynomial will give us the location of the 2-cycle:

q± =
1

2λ

(

λ + 1 ±
√

(λ + 1)(λ − 3)
)

Hence this 2-cycle only exists when λ > 3 or λ < −1. Some messy algebra shows
that

F ′(q−)F ′(q+) = 4 + 2λ − λ2

This then shows that the two cycle is attracting for 3 < c < 1 +
√

6 ≈ 3.449.
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8. Describe the bifurcation that occurs at λ = −1.

9. Sketch the phase portrait and bifurcation diagram near λ = −1.

• The attracting fixed point at x = 0 becomes neutral at λ = −1, and from the
above workings we see that a 2-cycle is born when λ < −1. Again, this 2-cycle is
given by:

q± =
1

2λ

(

λ + 1 ±
√

(λ + 1)(λ − 3)
)

and so its stability is again determined by

|F ′(q−)F ′(q+)| = |4 + 2λ − λ2| < 1

Since we are now interested in λ < −1, this equation now tells us that the 2-cycle
is stable for 1 −

√
6 < λ < −1.
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10. Consider Fλ = λx − x3. Show that the 2-cycle given by ±
√

λ + 1 is repelling when
λ > −1.

• In order to show that a two cycle q± is repelling, we need to show that |F ′(q+)F ′(q−)| >
1. F ′ = λ − 3x2, so:

F ′(q+)F ′(q−) =
(

λ − 3q2

+

) (

λ − 3q2

−

)

= (λ − 3(λ + 1))2

= (3 + 2λ)2

Since this is a square, it is never negative. It is equal to 1 when

(3 + 2λ)2 = 1 −→ 4λ2 + 12λ + 8 = 0 −→ (2λ + 4)(2λ + 2) = 0

i.e. when λ = −2,−1. It is bigger than 1 when

∞ < c < −2 or − 1 < c < ∞

Hence the two-cycle is repelling for c > −1.

11. Consider the family of functions Fλ(x) = x5 − λx3. Discuss the bifurcation of 2-cycles
that occurs when λ = 2. Note that this function is an odd function of x for all λ — so
points of period 2 can be found by solving Fλ(x) = −x.

• We find the 2-cycles by solving F (x) = −x:

F (x) + x = x5 − λx3 + x = x(x4 − λx2 + 1)

This then has solutions:

x = 0

x2 =
1

2

(

λ ±
√

λ2 − 4
)
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Now, x = 0 is a fixed point, so the other points form the two-cycles:

p± = ±1

2

√

2λ + 2
√

λ2 − 4

q± = ±1

2

√

2λ − 2
√

λ2 − 4

(since F (±x) = ∓x). We see that the 2-cycles do not exist for λ < 2. We might
expect that there is a period doubling bifurcation at λ = 2 since there are 2-cycles
involved. Let us set λ = 2 and look at the locations of fixed points and 2-cycles:

F (x) − x = x5 − 2x3 − x = x(x4 − 2x2 − 1)

So the fixed points are at x = 0,±
√

1 +
√

2,±i
√

−1 +
√

2. Setting λ = 2 in the
above expressions for the 2-cycles gives:

p± = ±1

q± = ±1

And so the 2-cycles do not coalesce with the fixed points at λ = 2 as we might
expect with a period doubling bifurcation. Instead this is an example of a saddle-
node bifurcation of a 2-cycle.
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