4 Problem Set 4 - Bifurcations

1. Each of the following functions undergoes a bifurcation at the given parameter value. In each case use analytic or graphical techniques to identify the type of bifurcation (saddle node or period doubling or neither). Also sketch a "typical" phase portrait for values of the parameter above, at and below the indicated value.
(a) $F_{\lambda}(x)=x+x^{2}+\lambda$ at $\lambda=0$

- F_{λ} has two fixed points at $x= \pm \sqrt{-\lambda}$. Hence there are no fixed points for $\lambda>0$. $F^{\prime}=2 x+1$, so there is a neutral fixed point at $x=0$ for $\lambda=0$. For $\lambda<0, x=+\sqrt{-\lambda}$ is a repelling fixed point. For $-1<\lambda<0, x=-\sqrt{-\lambda}$ is an attracting fixed point. Hence this is a saddle-node bifurcation.
(b) $F_{\lambda}(x)=x+x^{2}+\lambda$ at $\lambda=-1$
- Continuing the previous question, we see that at $\lambda=-1$, the fixed point at $x=-\sqrt{\lambda}=-1$ becomes neutral with derivative $=-1$. This suggests a period doubling bifurcation. Indeed we can check (if we get the algebra right):

$$
F(F(x))-x=\left(\lambda+x^{2}+2 x+2\right)\left(\lambda+x^{2}\right) .
$$

This gives the fixed points at $x= \pm \sqrt{-\lambda}$, and also the location of a two-cycle at $x=-1 \pm \sqrt{-1-\lambda}$. This two-cycle is born at the neutral fixed point when $\lambda<-1$. Hence this is a period doubling bifurcation.
(c) $S_{\mu}(x)=\mu \sin x$ at $\mu=1$

- For $-1<\mu<1$, a plot of $S(x)$ shows that there is only 1 fixed point at $x=0$. For $-1<\mu<1$ it is attracting, while for $|\mu|>1$ it is repelling. For $\mu>1$ two new fixed points are created.
(d) $S_{\mu}(x)=\mu \sin x$ at $\mu=-1$
- Continuing the previous question, we see that the origin becomes a neutral fixed point at $\mu=-1$, and that the derivative at $x=0$ is -1 . This suggests a period doubling bifurcation. Again, a careful plot of $S(S(x))$ shows that a two-cycle is created and that it is attracting.
(e) $F_{c}(x)=x^{3}+c$ at $c=2 / 3 \sqrt{3}$

- Careful plotting is required for this one. We see that for "large" c, F has only one intersection with $y=x$ and this occurs for $x<0$. Whereas for "small" c, F has three intersections with $y=x$, the two new intersections occur for $x>0$ - this suggests a saddle-node bifurcation. Indeed we can check that at $c=2 / 3 \sqrt{3}$ that $F(x)=x$ has two solutions, one of which corresponds to a neutral fixed point:

$$
x^{3}-x+2 / 3 \sqrt{3}=(x+2 / \sqrt{3})(x-1 / \sqrt{3})^{2} .
$$

(You can find this by looking for factorisations of the form $\left.(x-a)(x-b)^{2}\right)$. Checking the derivative at $x=1 / \sqrt{3}$ shows that this point is a neutral fixed point. Hence this is a saddle node bifurcation.
(f) $E_{\lambda}(x)=\lambda\left(e^{x}-1\right)$ at $\lambda=-1$

- A careful plot shows that there is a fixed point at $x=0$, and that this is the only one. The derivative at this fixed point is simple $E^{\prime}(0)=\lambda$. Hence at $\lambda=-1$ we expect that there is a period doubling bifurcation. A careful plot will verify this.
(g) $E_{\lambda}(x)=\lambda\left(e^{x}-1\right)$ at $\lambda=1$

- From the previous question we see that the fixed point at $x=0$ becomes neutral at $\lambda=1$, with derivative 1 . For $\lambda<1$ there is a second fixed point >0, while for $\lambda>1$ there is a second fixed point <0.

The following questions (2-9) deal with the logistic equation $F_{\lambda}(x)=\lambda x(1-x)$.
2. For which values of λ does F_{λ} have an attracting fixed point at $x=0$?
3. For which values of λ does F_{λ} have a non-zero attracting fixed point?
4. Describe the bifurcation that occurs at $\lambda=1$.
5. Sketch the phase portrait and bifurcation diagram near $\lambda=1$.

- Let us first find the location of the fixed points of F :

$$
F(x)-x=\lambda x(1-x)-x=x(\lambda-1-\lambda x)
$$

Hence there are fixed points at $x=0$ and $x=\frac{\lambda-1}{\lambda}$. The derivative of F is $F^{\prime}=\lambda(1-2 x)$. Hence the fixed point at $x=0$ is attracting for $|\lambda|<1$.

- At the other fixed point shows $F^{\prime}\left(\frac{\lambda-1}{\lambda}\right)=2-\lambda$. Hence this fixed point is attracting for $1<\lambda<3$.
- For $\lambda \neq 1$ there are two fixed points. For $\lambda<1$ the fixed point at $x=0$ is attracting, and it becomes neutral when it coalesces with the other fixed point when $\lambda=1$. The non-zero fixed point then becomes attracting for $\lambda>1$.

6. Describe the bifurcation that occurs at $\lambda=3$.
7. Sketch the phase portrait and bifurcation diagram near $\lambda=3$.

- When $\lambda=3$, the fixed point at $x=\frac{\lambda-1}{\lambda}$ becomes neutral with derivative $=-1$. This suggests a period doubling bifurcation. Solving $F(F(x))-x=0$ gives:

$$
\begin{aligned}
F(F(x))-x & =\lambda(\lambda x(1-x))(1-\lambda x(1-x))-x \\
& =\text { some algebra } \\
& =\left((\lambda-1) x-\lambda x^{2}\right)\left(\lambda^{2} x^{2}-\lambda(\lambda+1) x+(\lambda+1)\right)
\end{aligned}
$$

Note - we use the fact that the fixed points of $F(x)$ must also be fixed points of $F(F(x))$ to help us factorise the quartic polynomial. This tells us that $((\lambda-$ 1) $x-\lambda x^{2}$) must be a factor (since this is the polynomial we had to solve to find the fixed points of $F(x)$).

- Solving the second quadratic polynomial will give us the location of the 2-cycle:

$$
q_{ \pm}=\frac{1}{2 \lambda}(\lambda+1 \pm \sqrt{(\lambda+1)(\lambda-3)})
$$

Hence this 2-cycle only exists when $\lambda>3$ or $\lambda<-1$. Some messy algebra shows that

$$
F^{\prime}\left(q_{-}\right) F^{\prime}\left(q_{+}\right)=4+2 \lambda-\lambda^{2}
$$

This then shows that the two cycle is attracting for $3<c<1+\sqrt{6} \approx 3.449$.

8. Describe the bifurcation that occurs at $\lambda=-1$.
9. Sketch the phase portrait and bifurcation diagram near $\lambda=-1$.

- The attracting fixed point at $x=0$ becomes neutral at $\lambda=-1$, and from the above workings we see that a 2 -cycle is born when $\lambda<-1$. Again, this 2-cycle is given by:

$$
q_{ \pm}=\frac{1}{2 \lambda}(\lambda+1 \pm \sqrt{(\lambda+1)(\lambda-3)})
$$

and so its stability is again determined by

$$
\left|F^{\prime}\left(q_{-}\right) F^{\prime}\left(q_{+}\right)\right|=\left|4+2 \lambda-\lambda^{2}\right|<1
$$

Since we are now interested in $\lambda<-1$, this equation now tells us that the 2-cycle is stable for $1-\sqrt{6}<\lambda<-1$.

10. Consider $F_{\lambda}=\lambda x-x^{3}$. Show that the 2-cycle given by $\pm \sqrt{\lambda+1}$ is repelling when $\lambda>-1$.

- In order to show that a two cycle $q_{ \pm}$is repelling, we need to show that $\left|F^{\prime}\left(q_{+}\right) F^{\prime}\left(q_{-}\right)\right|>$ 1. $F^{\prime}=\lambda-3 x^{2}$, so:

$$
\begin{aligned}
F^{\prime}\left(q_{+}\right) F^{\prime}\left(q_{-}\right) & =\left(\lambda-3 q_{+}^{2}\right)\left(\lambda-3 q_{-}^{2}\right) \\
& =(\lambda-3(\lambda+1))^{2} \\
& =(3+2 \lambda)^{2}
\end{aligned}
$$

Since this is a square, it is never negative. It is equal to 1 when

$$
(3+2 \lambda)^{2}=1 \longrightarrow 4 \lambda^{2}+12 \lambda+8=0 \longrightarrow(2 \lambda+4)(2 \lambda+2)=0
$$

i.e. when $\lambda=-2,-1$. It is bigger than 1 when

$$
\infty<c<-2 \quad \text { or } \quad-1<c<\infty
$$

Hence the two-cycle is repelling for $c>-1$.
11. Consider the family of functions $F_{\lambda}(x)=x^{5}-\lambda x^{3}$. Discuss the bifurcation of 2-cycles that occurs when $\lambda=2$. Note that this function is an odd function of x for all λ - so points of period 2 can be found by solving $F_{\lambda}(x)=-x$.

- We find the 2-cycles by solving $F(x)=-x$:

$$
F(x)+x=x^{5}-\lambda x^{3}+x=x\left(x^{4}-\lambda x^{2}+1\right)
$$

This then has solutions:

$$
\begin{aligned}
x & =0 \\
x^{2} & =\frac{1}{2}\left(\lambda \pm \sqrt{\lambda^{2}-4}\right)
\end{aligned}
$$

Now, $x=0$ is a fixed point, so the other points form the two-cycles:

$$
\begin{aligned}
& p_{ \pm}= \pm \frac{1}{2} \sqrt{2 \lambda+2 \sqrt{\lambda^{2}-4}} \\
& q_{ \pm}= \pm \frac{1}{2} \sqrt{2 \lambda-2 \sqrt{\lambda^{2}-4}}
\end{aligned}
$$

(since $F(\pm x)=\mp x)$. We see that the 2 -cycles do not exist for $\lambda<2$. We might expect that there is a period doubling bifurcation at $\lambda=2$ since there are 2-cycles involved. Let us set $\lambda=2$ and look at the locations of fixed points and 2-cycles:

$$
F(x)-x=x^{5}-2 x^{3}-x=x\left(x^{4}-2 x^{2}-1\right)
$$

So the fixed points are at $x=0, \pm \sqrt{1+\sqrt{2}}, \pm i \sqrt{-1+\sqrt{2}}$. Setting $\lambda=2$ in the above expressions for the 2-cycles gives:

$$
\begin{aligned}
p_{ \pm} & = \pm 1 \\
q_{ \pm} & = \pm 1
\end{aligned}
$$

And so the 2-cycles do not coalesce with the fixed points at $\lambda=2$ as we might expect with a period doubling bifurcation. Instead this is an example of a saddlenode bifurcation of a 2 -cycle.

