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4 Problem Set 4 — Bifurcations

1. Each of the following functions undergoes a bifurcation at the given parameter value.
In each case use analytic or graphical techniques to identify the type of bifurcation
(saddle node or period doubling or neither). Also sketch a “typical” phase portrait for
values of the parameter above, at and below the indicated value.

(a) Fa(z) =z 42+ Xat A =0

e F) has two fixed points at = ++v/—\. Hence there are no fixed points for
A> 0. F' =2x + 1, so there is a neutral fixed point at z = 0 for A = 0. For
A <0, 2 =—+v—\is a repelling fixed point. For —1 < A < 0, z = —v/—\ is
an attracting fixed point. Hence this is a saddle-node bifurcation.

(b) Fa(z)=z+a?+Xat A= -1

e Continuing the previous question, we see that at A = —1, the fixed point
at © = —v A = —1 becomes neutral with derivative = —1. This suggests
a period doubling bifurcation. Indeed we can check (if we get the algebra
right):

F(F(z)) —x=(A\+2*+2z+2)(\ + 7).

This gives the fixed points at * = ++/—A, and also the location of a two-cycle
at r = —1++/—1 — A. This two-cycle is born at the neutral fixed point when
A < —1. Hence this is a period doubling bifurcation.

(c) Su(z) =psinz at p=1

e For —1 < p < 1, a plot of S(x) shows that there is only 1 fixed point at
x =0. For =1 < p < 1 it is attracting, while for |u| > 1 it is repelling. For
(> 1 two new fixed points are created.

(d) Su(z) =psinz at p=—1

e Continuing the previous question, we see that the origin becomes a neutral
fixed point at © = —1, and that the derivative at = 0 is —1. This suggests
a period doubling bifurcation. Again, a careful plot of S(S(z)) shows that a
two-cycle is created and that it is attracting.

(e) Fu(z)=2a%+cat c=2/3V3
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e Careful plotting is required for this one. We see that for “large” ¢, F' has only
one intersection with y = x and this occurs for x < 0. Whereas for “small”
¢, F has three intersections with y = x, the two new intersections occur for
x > 0 — this suggests a saddle-node bifurcation. Indeed we can check that
at ¢ = 2/3+/3 that F(x) = 2 has two solutions, one of which corresponds to
a neutral fixed point:

2 — 1 +2/3V3 = (z+2/V3)(xz —1/V3)%.

(You can find this by looking for factorisations of the form (z — a)(x — b)?).
Checking the derivative at © = 1/ /3 shows that this point is a neutral fixed
point. Hence this is a saddle node bifurcation.

(f) Ex(x) =Xe*—1) at A= —1

e A careful plot shows that there is a fixed point at x = 0, and that this is the
only one. The derivative at this fixed point is simple £'(0) = . Hence at
A = —1 we expect that there is a period doubling bifurcation. A careful plot
will verify this.

(g) Ex(z) =Me"—1)at A=1

)
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e From the previous question we see that the fixed point at x = 0 becomes
neutral at A = 1, with derivative 1. For A < 1 there is a second fixed point
> 0, while for A > 1 there is a second fixed point < 0.

The following questions (2-9) deal with the logistic equation Fj(x) = Az(1 — z).
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2. For which values of A does F)\ have an attracting fixed point at x = 07

3. For which values of A does F)\ have a non-zero attracting fixed point?
4. Describe the bifurcation that occurs at A = 1.
5. Sketch the phase portrait and bifurcation diagram near A = 1.

e Let us first find the location of the fixed points of F"
Fla)—z=X(1—2z)—2z=2(A—1- A1)

Hence there are fixed points at x = 0 and x = % The derivative of F' is

F’" = X\(1 — 2z). Hence the fixed point at z = 0 is attracting for |A| < 1.
e At the other fixed point shows F”’ (%) = 2—\. Hence this fixed point is attracting
for 1 < A < 3.

e For \ = 1 there are two fixed points. For A < 1 the fixed point at x = 0 is
attracting, and it becomes neutral when it coalesces with the other fixed point
when A = 1. The non-zero fixed point then becomes attracting for A > 1.
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6. Describe the bifurcation that occurs at A = 3.

7. Sketch the phase portrait and bifurcation diagram near \ = 3.
e When )\ = 3, the fixed point at x = % becomes neutral with derivative = —1.
This suggests a period doubling bifurcation. Solving F(F(x)) — x = 0 gives:
F(F(z))—z = AMdz(l—-2))(1-Az(1—-2)) —=
= some algebra
= <()\ — 1)z — )xx2> ()\2x2 —AMA+Dx+ A+ 1))

Note — we use the fact that the fixed points of F'(x) must also be fixed points
of F(F(x)) to help us factorise the quartic polynomial. This tells us that ((A —
1)z — Az?) must be a factor (since this is the polynomial we had to solve to find
the fixed points of F'(z)).




Dynamical Systems and Chaos — 620-341

e Solving the second quadratic polynomial will give us the location of the 2-cycle:

0= g (V1= VOE DR 3)

Hence this 2-cycle only exists when A > 3 or A < —1. Some messy algebra shows
that

F'(q-)F'(q1) =4 +2) = \?

This then shows that the two cycle is attracting for 3 < ¢ < 1 + V6 ~ 3.449.
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8. Describe the bifurcation that occurs at A = —1.

9. Sketch the phase portrait and bifurcation diagram near A = —1.

e The attracting fixed point at x = 0 becomes neutral at A = —1, and from the
above workings we see that a 2-cycle is born when A < —1. Again, this 2-cycle is
given by:

1
0= 5 <A+1i\/(>\+1)()\—3))

and so its stability is again determined by
F/(q-)F'(q0)] = 4+ 20— 3| < 1

Since we are now interested in A < —1, this equation now tells us that the 2-cycle
is stable for 1 — v6 < A < —1.
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10. Consider Fy = Az — 2. Show that the 2-cycle given by v\ + 1 is repelling when
A > —1.

e In order to show that a two cycle ¢4 is repelling, we need to show that |F'(q.)F'(q-)| >
1. F' =\ — 322, so:

Flg)F'(q-) = (A=3q}) (A —3¢%)
— (A—30+ 1)
= (3+2))°

Since this is a square, it is never negative. It is equal to 1 when
(B+20)2=1— 4N+ 12 +8=0 — (2A +4)(2A +2) =0
i.e. when A = —2, —1. It is bigger than 1 when
oo <ce< =2 or —l<c< o

Hence the two-cycle is repelling for ¢ > —1.

11. Consider the family of functions Fy(z) = 2° — Az3. Discuss the bifurcation of 2-cycles
that occurs when A = 2. Note that this function is an odd function of x for all A — so
points of period 2 can be found by solving Fj(z) = —uz.

e We find the 2-cycles by solving F'(z) = —x:

Fx)+r=2" - 2’ +z =z(2" — \2® + 1)

This then has solutions:

(V)
N =D

(Aim)
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Now, x = 0 is a fixed point, so the other points form the two-cycles:

1

Py = 15\/2)\+2\/>\2—4
1

G = ii\/Q)\—2\/)\2—4

(since F(+x) = Fx). We see that the 2-cycles do not exist for A < 2. We might
expect that there is a period doubling bifurcation at A = 2 since there are 2-cycles
involved. Let us set A = 2 and look at the locations of fixed points and 2-cycles:

Flz)—2 = 2°—22° —2=2(2* —22° - 1)

So the fixed points are at © = 0, :I:\/l + 2, :l:i\/—l + /2. Setting A\ = 2 in the
above expressions for the 2-cycles gives:

P+ = +1
g+ = =1
And so the 2-cycles do not coalesce with the fixed points at A = 2 as we might

expect with a period doubling bifurcation. Instead this is an example of a saddle-
node bifurcation of a 2-cycle.




