5 Problem Set 5 - Topological conjugacy

1. Find a topological conjugacy between the logistic map

$$
F_{\mu}(x)=\mu x(1-x)
$$

and the quadratic map

$$
Q_{c}(x)=x^{2}+c
$$

Hint: try a linear conjugacy $(h(x)=a x+b)$ and equate coefficients of x. You will also have to work out how c and μ are related.

- Let $h(x)$ be a linear function, $h(x)=a x+b$. We now try to solve

$$
f(h(x))=h(Q(x))
$$

This gives

$$
-\mu a^{2} x^{2}+\mu a(1-2 b) x+\mu b(1-b)=a x^{2}+a c+b
$$

Equating coefficients of x gives a system of equations involving a, b, c and μ. An obvious choice of b is $b=1 / 2$ since this sets the coefficient of x^{1} to be zero. We then can choose $a=-1 / \mu$ which equates the coefficients of x^{2}. This then leaves the coefficients of x^{0} :

$$
\mu b(1-b)=a c+b \longrightarrow \mu / 4=1 / 2-c / \mu
$$

This shows that $c=-\mu(2-\mu) / 4$. Hence the conjugacy between F and Q is given by

$$
\begin{aligned}
h(x) & =\frac{1}{2}-\frac{x}{\mu} \\
c & =-\frac{\mu(2-\mu)}{4}
\end{aligned}
$$

Since h is a linear function it is 1-1 so this is a topological conjugacy rather than a semi-conjugacy.
2. Find a conjugacy between the tent-map, $T:[0,1] \mapsto[0,1]$:

$$
T(x)= \begin{cases}2 x & x \leq 1 / 2 \\ 2-2 x & x>1 / 2\end{cases}
$$

and $G(x)=2 x^{2}-1$ on the interval $[-1,1]$. Hint: think "angle doubling".

- Thanks to the "angle-doubling" hint, we might try something like $h(\theta)=\cos (\theta)$, since $\cos (2 \theta)=2 \cos ^{2} \theta-1$. In particular try $h(x)=\cos (\pi x)$:

$$
\begin{aligned}
h(T(x)) & =G(h(x)) \\
\cos (2 \pi x) & =2 \cos ^{2}(\pi x)-1 \\
& =\cos (2 \pi x)
\end{aligned}
$$

as required. However we also have to test the other branch of T :

$$
\begin{aligned}
h(T(x)) & =G(h(x)) \\
\cos (2 \pi-2 \pi x) & =2 \cos ^{2}(2 \pi x)-1 \\
& =\cos (2 \pi x)
\end{aligned}
$$

which is true since $\cos (2 \pi-\theta)=\cos (\theta)$. Now since $h:[0,1] \mapsto[-1,1]$ is a $1-1$ function, this is a topological conjugacy rather than a semi-conjugacy.
3. Find a conjugacy between $G(x)=2 x^{2}-1$ on $[-1,1]$ and $Q_{-2}(x)=x^{2}-2$ on $[-2,2]$. Hint: try a linear conjugacy.

- Try $h:[-1,1] \mapsto[-2,2]$ defined by $h(x)=2 x$.

4. Find a conjugacy between the "tripling map" on $S^{1}, F(\theta)=3 \theta$, and $G(x)=4 x^{3}-3 x$ on $[-1,1]$.

- Try $h: S^{1} \mapsto[-1,1]$ defined by $h(\theta)=\cos (\theta)$.

