6 Problem Set 6 - Symbolic Dynamics

1. Find all points in Σ that are distance exactly $1 / 2$ from the point ($0000 \ldots$).

- Write $s=\left(s_{0} s_{1} s_{2} \ldots\right)$. The distance between s and ($000 \ldots$) is:

$$
d[s,(000 \ldots)]=\sum_{k \geq 0} \frac{\left|s_{k}\right|}{2^{k}}=\sum_{k \geq 0} \frac{s_{k}}{2^{k}}
$$

since $s_{k}=0,1$. The term s_{0} must be 0 , otherwise the distance would be bigger than 1 . We have 2 choices for s_{1}.

- If $s_{1}=1$, then $d[s,(000 \ldots)]=1 / 2+\sum_{k \geq 1} \frac{s_{k}}{2^{k}}$ and so $s_{k}=0$ for all $k \geq 2$.
- If $s_{1}=0$ then $d[s,(000 \ldots)]=\sum_{k \geq 2} \frac{s_{k}}{2^{k}}$ which is bounded above by $1 / 2$. Hence we require $s_{k}=1$ for all $k \geq 2$.

Thus we have $s=(01000 \ldots)$ or $s=(00111 \ldots)$. Use the proximity theorem to see that there are no other points.
2. Find two points halfway between $(000 \ldots)$ and ($111 \ldots$). Are there any other such points? Why or why not?

- The distance between $(00 \ldots)$ and $(11 \ldots)$ is 2 . There are 2 points distance 1 from these points: $s=(100 \ldots)$ and $s=(0111 \ldots)$. There are no other such points - the proximity theorem will show this.

3. Decide whether or not the following sets are dense in $[0,1]$.
(a) The set of all numbers in $[0,1]$ except those of the form $1 / 2^{n}, n=1,2,3, \ldots$.

- This set is dense in $[0,1]$. Between any two points in $[0,1]$ there will always be another point in $[0,1]$ that is not of the form $1 / 2^{n}$.
(b) The Cantor middle thirds set.
- This set is not dense in $[0,1]$ - around $x=1 / 2$ there are no points in the Cantor set.
(c) The compliment of the Cantor middle thirds set.
- Look at the ternary expansion of a point x in the compliment of the Cantor set - it must contain a 1 . In any ε-neighbourhood of a point x in $[0,1]$ we can find a point whose ternary expansion has a 1 in it - just put a 1 far enough down the expansion and it will differ from x by a sufficiently small amount. Hence the compliment of the cantor set is dense in $[0,1]$.

4. Is the orbit of the point (01001000100001 ...) under σ dense in Σ ?

- No - there is no point in this orbit close to (11111...).

The following questions concern the space of sequences on N symbols, Σ_{N}, together with the shift map σ_{N} and the distance function:

$$
d[s, t]=\sum_{k=0}^{\infty} \frac{\left|s_{k}-t_{k}\right|}{N^{k}}
$$

5. Prove that $\sigma_{N}: \Sigma_{N} \mapsto \Sigma_{N}$ is continuous.

- The proof is analogous to the proof that σ is continuous on sequences of 2 symbols.

Take a point $x \in \Sigma_{N}$ and an $\varepsilon>0$. Pick n such that $1 / N^{n}<\varepsilon$. The proximity theorem (on N symbols) then says that all points whose first $n+1$ terms agree with x will be within ε of x. Pick $\delta=1 / N^{n+1}$ — points that are withing δ of x will have their first $n+2$ terms the same. Applying the shift map to these points will give points that agree with the first $n+1$ terms of $\sigma(x)$. Hence we have given x and ε there exists a δ such that if $d[x, t]<\delta$ then $d\left[\sigma_{N}(x), \sigma_{N}(\delta)\right]<\varepsilon$, and so σ_{N} is continuous at x. Since x was arbitary we have that σ_{N} is continuous on all of Σ_{N}.
6. How many points of prime-period 2 does σ_{N} have?

- There are N fixed points under σ_{N} - these are

$$
(000 \ldots) \quad(111 \ldots) \quad \ldots \quad((N-1)(N-1)(N-1) \ldots)
$$

There are N^{2} fixed points of σ^{2} of which N will be fixed points of σ. Hence there are $N^{2}-N$ points of prime period 2 .
7. Define the new distance function:

$$
d_{\delta}[s, t]=\sum_{k=0}^{\infty} \frac{\delta_{k}(s, t)}{N^{k}}
$$

where

$$
\delta_{k}(s, t)= \begin{cases}1 & \text { if } s_{k} \neq t_{k} \\ 0 & \text { if } s_{k}=t_{k}\end{cases}
$$

Prove that $d_{\delta}[s, t]$ is also a metric on Σ_{N}.

- We need to show a few things:
- Since $\delta_{k}(s, t)=\delta(t, s)$ we have that $d_{\delta}[s, t]=d_{\delta}[t, s]$.
- Since the sum that defines d_{δ} consists of terms that are non-negative it follows that $d_{\delta}[s, t] \geq 0$.
- If $s_{k}=t_{k}$ for all k - then $d_{\delta}[s, t]=\sum_{k \geq 0} 0=0$. While if $d_{\delta}[s, t]=0$ it follows (because each term is ≥ 0) that each term in the sum must be 0 and so $s_{k}=t_{k}$ for all k. We have shown that $d_{\delta}[s, t]=0 \leftrightarrow s=t$.
- Last of all we need to show the triangle inequality:

$$
\begin{aligned}
d_{\delta}[s, t] & =\sum_{k=0}^{\infty} \frac{\delta_{k}(s, t)}{N^{k}} \\
& \leq \sum_{k=0}^{\infty} \frac{\delta_{k}(s, u)+\delta(u, t)}{N^{k}} \\
& =d_{\delta}[s, u]+d_{\delta}[u, t]
\end{aligned}
$$

The middle line follows because:

* if s_{k}, t_{k} are the same, then $\delta_{k}(s, t)=0$.
* if s_{k}, t_{k} are different then $\delta_{k}(s, t)=1$ and one or both of the $\delta_{k}(s, u)$ and $\delta_{k}(u, t)$ must also be 1 .

8. Using $d_{\delta}[s, t]$ what is the maximum distance between two points in Σ_{N} ?

- The maximum distance will be obtained by maximising each term in the sum that defines d_{δ} :

$$
d_{\delta}[s, t]=\sum_{k=0}^{\infty} \frac{\delta_{k}(s, t)}{N^{k}} \leq \sum_{k=0}^{\infty} \frac{1}{N^{k}}
$$

This last sum is $N /(N-1)$. One can verify that this distance is obtained by taking the sequences $(000 \ldots)$ and $(111 \ldots)$.

