6 Problem Set 6 — Symbolic Dynamics

- 1. Find all points in Σ that are distance exactly 1/2 from the point (0000...).
 - Write $s = (s_0 s_1 s_2 \dots)$. The distance between s and $(000 \dots)$ is:

$$d[s, (000\dots)] = \sum_{k \ge 0} \frac{|s_k|}{2^k} = \sum_{k \ge 0} \frac{s_k}{2^k}$$

since $s_k = 0, 1$. The term s_0 must be 0, otherwise the distance would be bigger than 1. We have 2 choices for s_1 .

- If $s_1 = 1$, then $d[s, (000...)] = 1/2 + \sum_{k>1} \frac{s_k}{2^k}$ and so $s_k = 0$ for all $k \ge 2$.
- If $s_1 = 0$ then $d[s, (000...)] = \sum_{k \ge 2} \frac{s_k}{2^k}$ which is bounded above by 1/2. Hence we require $s_k = 1$ for all $k \ge 2$.

Thus we have s = (01000...) or s = (00111...). Use the proximity theorem to see that there are no other points.

- 2. Find two points halfway between (000...) and (111...). Are there any other such points? Why or why not?
 - The distance between (00...) and (11...) is 2. There are 2 points distance 1 from these points: s = (100...) and s = (0111...). There are no other such points the proximity theorem will show this.
- 3. Decide whether or not the following sets are dense in [0, 1].
 - (a) The set of all numbers in [0, 1] except those of the form $1/2^n$, $n = 1, 2, 3, \ldots$
 - This set is dense in [0, 1]. Between any two points in [0, 1] there will always be another point in [0, 1] that is not of the form $1/2^n$.
 - (b) The Cantor middle thirds set.
 - This set is not dense in [0, 1] around x = 1/2 there are no points in the Cantor set.
 - (c) The compliment of the Cantor middle thirds set.
 - Look at the ternary expansion of a point x in the compliment of the Cantor set — it *must* contain a 1. In any ε -neighbourhood of a point x in [0, 1] we can find a point whose ternary expansion has a 1 in it — just put a 1 far enough down the expansion and it will differ from x by a sufficiently small amount. Hence the compliment of the cantor set is dense in [0, 1].
- 4. Is the orbit of the point (01 001 0001 00001 ...) under σ dense in Σ ?

• No — there is no point in this orbit close to (11111...).

The following questions concern the space of sequences on N symbols, Σ_N , together with the shift map σ_N and the distance function:

$$d[s,t] = \sum_{k=0}^{\infty} \frac{|s_k - t_k|}{N^k}$$

- 5. Prove that $\sigma_N : \Sigma_N \mapsto \Sigma_N$ is continuous.
 - The proof is analogous to the proof that σ is continuous on sequences of 2 symbols. Take a point $x \in \Sigma_N$ and an $\varepsilon > 0$. Pick n such that $1/N^n < \varepsilon$. The proximity theorem (on N symbols) then says that all points whose first n + 1 terms agree with x will be within ε of x. Pick $\delta = 1/N^{n+1}$ — points that are withing δ of xwill have their first n + 2 terms the same. Applying the shift map to these points will give points that agree with the first n + 1 terms of $\sigma(x)$. Hence we have given x and ε there exists a δ such that if $d[x, t] < \delta$ then $d[\sigma_N(x), \sigma_N(\delta)] < \varepsilon$, and so σ_N is continuous at x. Since x was arbitrary we have that σ_N is continuous on all of Σ_N .
- 6. How many points of *prime*-period 2 does σ_N have?
 - There are N fixed points under σ_N these are

(000...) (111...) \dots ((N-1)(N-1)(N-1)...)

There are N^2 fixed points of σ^2 of which N will be fixed points of σ . Hence there are $N^2 - N$ points of prime period 2.

7. Define the new distance function:

$$d_{\delta}[s,t] = \sum_{k=0}^{\infty} \frac{\delta_k(s,t)}{N^k}$$

where

$$\delta_k(s,t) = \begin{cases} 1 & \text{if } s_k \neq t_k \\ 0 & \text{if } s_k = t_k \end{cases}$$

Prove that $d_{\delta}[s, t]$ is also a metric on Σ_N .

- We need to show a few things:
 - Since $\delta_k(s,t) = \delta(t,s)$ we have that $d_{\delta}[s,t] = d_{\delta}[t,s]$.
 - Since the sum that defines d_{δ} consists of terms that are non-negative it follows that $d_{\delta}[s,t] \geq 0$.

6 PROBLEM SET 6 — SYMBOLIC DYNAMICS

- If $s_k = t_k$ for all k then $d_{\delta}[s,t] = \sum_{k \ge 0} 0 = 0$. While if $d_{\delta}[s,t] = 0$ it follows (because each term is ≥ 0) that each term in the sum must be 0 and so $s_k = t_k$ for all k. We have shown that $d_{\delta}[s,t] = 0 \leftrightarrow s = t$.
- Last of all we need to show the triangle inequality:

$$d_{\delta}[s,t] = \sum_{k=0}^{\infty} \frac{\delta_k(s,t)}{N^k}$$
$$\leq \sum_{k=0}^{\infty} \frac{\delta_k(s,u) + \delta(u,t)}{N^k}$$
$$= d_{\delta}[s,u] + d_{\delta}[u,t]$$

The middle line follows because:

- * if s_k, t_k are the same, then $\delta_k(s, t) = 0$.
- * if s_k, t_k are different then $\delta_k(s, t) = 1$ and one or both of the $\delta_k(s, u)$ and $\delta_k(u, t)$ must also be 1.
- 8. Using $d_{\delta}[s, t]$ what is the maximum distance between two points in Σ_N ?
 - The maximum distance will be obtained by maximising each term in the sum that defines d_δ:

$$d_{\delta}[s,t] = \sum_{k=0}^{\infty} \frac{\delta_k(s,t)}{N^k} \le \sum_{k=0}^{\infty} \frac{1}{N^k}$$

This last sum is N/(N-1). One can verify that this distance is obtained by taking the sequences (000...) and (111...).