7 Problem Set 7 - Complex plane

1. Consider the logistic map $f_{\mu}(z)=\mu z(1-z)$.
(a) Find the region $\mu \in \mathbb{C}$ such that $f_{\mu}(z)$ has an attracting fixed point.

- The fixed points are solutions of $f(z)-z=0$ which are

$$
z=0 \quad z=(\mu-1) / \mu
$$

- The derivative of $f(z)$ is

$$
f^{\prime}(z)=\mu(1-2 z)
$$

- The fixed point at $z=0$ is stable if

$$
\left|f^{\prime}(0)\right|=|\mu|<1
$$

which defines a circle of radius 1 centred at $\mu=0$ in the complex μ-plane.

- The fixed point at $z=(\mu-1) / \mu$ is stable if

$$
\left|f^{\prime}\left(\frac{\mu-1}{\mu}\right)\right|=|2-\mu|<1
$$

which defines a circle of radius 1 centred at $\mu=2$ in the complex μ-plane.
(b) Find the region $\mu \in \mathbb{C}$ such that $f_{\mu}(z)$ has an attracting 2-cycle.

- The 2-cycle is the solution of $f(f(z))-z=0$. These are:

$$
z=0, \frac{\mu-1}{\mu}, \frac{1}{2 \mu}(\mu+1 \pm \sqrt{(1+\mu)(\mu-3)})
$$

- Of these, the first 2 are the fixed points, while the last two are the 2-cycle call them $p_{ \pm}$.
- To work out where this is stable we need to find for which μ values:

$$
\left|f^{\prime}\left(p_{-}\right) f^{\prime}\left(p_{+}\right)\right|=\mu^{2}\left|\left(1-2 p_{-}\right)\left(1-2 p_{+}\right)\right|<1
$$

- Expanding this gives

$$
\left(1-2 p_{-}\right)\left(1-2 p_{+}\right)=1-2\left(p_{+}+p_{-}\right)+4\left(p_{+} p_{-}\right)
$$

- Computing each bit:

$$
p_{-}+p_{+}=\frac{1+\mu}{\mu}
$$

and

$$
\begin{aligned}
p_{-} p_{+} & =\frac{1}{4 \mu^{2}}\left((1+\mu)^{2}-(1+\mu)(\mu-3)\right) \\
& =\frac{1+\mu}{4 \mu^{2}}(1+\mu+3-\mu)=\frac{1+\mu}{\mu^{2}}
\end{aligned}
$$

- Putting these into the expression above gives:

$$
\left|\mu^{2}\left(1-2 \frac{1+\mu}{\mu}+4 \frac{1+\mu}{\mu^{2}}\right)\right|<1
$$

which simplifies to:

$$
\left|4+2 \mu-\mu^{2}\right|<1
$$

- Now we need to do some work - lets find the boundary

$$
4+2 \mu-\mu^{2}=e^{i \theta}
$$

This gives

$$
\mu=1 \pm \sqrt{5-e^{i \theta}}
$$

- This gives two curves in the μ-plane - unfortunately they don't simplify further - they are almost circles.

2. Consider the quadratic map $Q_{c}(z)=z^{2}+c$.
(a) Find the slope of Q_{c} at the (stable) fixed point (as a function of c).

- The slope is $2 z_{0}=1-\sqrt{1-4 c}$.
(b) Find the slope of Q_{c}^{2} at the 2-cycle (as a function of c).
- The slope is $4 z_{1} z_{2}=4 c+4$.
(c) An approximate renormalisation scheme for the period doubling of Q_{c} can be obtained by equating these two slopes. Show that this leads to the relation

$$
c_{n-1}=-2-6 c_{n}-4 c_{n}^{2}
$$

where c_{n} approximates the location of the stable 2^{n-1}-cycle.

- Put the slope of the fp as $1-\sqrt{1-4 c_{1}}$ and the slope of the 2 -cycle as $4 c_{2}+4$. Equating these gives:

$$
\begin{aligned}
-\sqrt{1-4 c_{1}} & =4 c_{2}+3 \\
1-4 c_{1} & =16 c_{2}^{2}+24 c_{2}+9 \\
c_{1} & =-2-6 c_{2}-4 c_{2}^{2}
\end{aligned}
$$

If we now assume this to hold between the slope of $Q^{2^{n-1}}$ at the 2^{n-1}-cycle and the slope of $Q^{2^{n}}$ at the 2^{n}-cycle then we obtain the above relation.
(d) Show that this leads to an approximation of $c_{\infty}=-\frac{7+\sqrt{17}}{8}$ - the location of transition to chaos.

- If we assume that the sequence of c_{n} converges to a fixed point c_{∞}, then c_{∞} satisfies $c_{\infty}=-2-6 c_{\infty}-4 c_{\infty}^{2}$. Solving this gives:

$$
c_{\infty}=-\frac{1}{8}(-7 \pm \sqrt{17}) \approx \frac{-3}{8}, \frac{-11}{8}
$$

The value $c_{\infty}=-\frac{1}{8}(-7+\sqrt{17})$ we can discount since the fixed point is stable for this value of c. This leaves the other value.
(e) Show that this also leads to the approximate feigenvalue, $\delta=1+\sqrt{17}$.

- Put $c_{n}=c_{\infty}+\epsilon_{n}$, and substitute it into the relation. Some algebra leads to:

$$
\epsilon_{n-1}=\epsilon_{n}+\sqrt{17} \epsilon_{n}-4 \epsilon_{n}^{2}
$$

Ignoring the ϵ^{2} terms (since they are very small) gives:

$$
\epsilon_{n-1} / \epsilon_{n}=1+\sqrt{17}
$$

If we use the scaling form $c_{n}=c_{\infty}+A / \delta^{n}$ then we see that $\epsilon_{n-1} / \epsilon_{n}=\delta$.
3. Consider the following construction of a fractal "gasket". Start with a circle of radius 1 and remove the region outside the 7 circles of radius $1 / 3$. Repeat this procedure for each of the 7 interior circles and so on.

(a) Give the diameter of the circles at the n-th stage.

- At each stage the diameter is reduced by a factor of 3 . So the diameter is $2 / 3^{n}$.
(b) Give the number of circles at the n-th stage.
- Each circle is replaced by 7 smaller circles at each stage. Hence the number of circles is 7^{n}.
(c) Calculate the area of the fractal.
- At the n-th stage there are 7^{n} circles of radius $1 / 3^{n}$. This gives a total area of $7^{n} \times \pi 3^{2 n}=\pi(7 / 9)^{n}$. Hence the area goes to zero.
(d) Calculate the fractal dimension of the object.
- Each circle of radius r may be covered by a square of side length $2 r$. Hence at the n-th stage we require 7^{n} squares of side-length $2 / 3^{n}$.

$$
7^{n}=A \times 2 \times 3^{n D}
$$

Hence the fractal dimension D is $\log 7 / \log 3 \approx 1.771243749 \ldots$.
4. Completely describe the orbits of the following 2-dimensional system:

$$
\mathbf{x}_{n+1}=\left(\begin{array}{cc}
-4 & 3 \\
5 & -1 / 2
\end{array}\right) \mathbf{x}_{n}
$$

(including stable and unstable manifolds).

- The system is expansive since the determinant is -13 .
- The eigenvalues and eigenvectors are:

$$
\begin{aligned}
\lambda_{1}=2 & \mathbf{v}_{1}=\binom{1}{2} \\
\lambda_{2}=-13 / 2 & \mathbf{v}_{1}=\binom{-6 / 5}{1}
\end{aligned}
$$

- There is no stable manifold. The unstable manifold is the space spanned by $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ which is all of \mathbb{R}^{2}.
- Hence the point $\mathbf{x}=\mathbf{0}$ is an unstable fixed points and the orbits of all other points are repelled from it.
- Along the line $y=2 x$ points are multiplied by 2 at each iteration. Points on this line are repelled from $\mathbf{0}$.
- Along the line $y=-5 x / 6$, points are multiplied by $-13 / 2$ at each iteration. Hence orbits along this second line "bounce" on either side of the origin while being repelled.
- This gives rise to a phase portrait something like:

