6 Symbolic Dynamics — summary

6.1 Sequence space

Definition. The sequence space on two symbols is the set

$$\Sigma = \{ (s_0 s_1 s_2 \dots) \mid s_k = 0 \text{ or } 1 \}.$$

The space Σ is the set of all infinite sequences of "0" s and "1" s. You should not think of the elements of Σ as numbers — they are not, rather they are infinite "words" in two letters which we write as 0 and 1. We could equally well use "a" and "b".

Definition. Let $s = (s_0 s_1 s_2 ...)$ and $t = (t_0 t_1 t_2 ...)$ be two elements in Σ . We define the distance between them to be

$$d[s,t] = \sum_{k \ge 0} \frac{|s_k - t_k|}{2^k}.$$

This function, d[s, t] is a generalisation of the usual concept of distance. Such functions are called metrics.

Definition. A function d is called a *metric* on a set X if for all $x, y, z \in X$ the following hold:

- 1. $d[x, y] \ge 0$ and further d[x, y] = 0 if and only if x = y.
- 2. d[x, y] = d[y, x].
- 3. $d[x, z] \le d[x, y] + d[y, z]$.

Given that we now have a concept of distance on Σ given by d[s, t], we want to get an idea of what it means for two points in Σ to be close together

Theorem (The proximity theorem). Let $s, t \in \Sigma$.

- 1. If $s_k = t_k$ for k = 0, 1, ..., n then $d[s, t] \le 1/2^n$.
- 2. If $d[s,t] < 1/2^n$ then $s_k = t_k$ for k = 0, 1, ..., n.

This theorem says that two points are close together if their first few terms agree.

6.2 The shift map

We are unable to do much with sequences in Σ . We have no idea how to add them or multiply them, etc. etc. Perhaps the simplest thing we can do to a sequence in Σ is to cut off the first term. This defines the shift map:

Definition. The shift map $\sigma : \Sigma \mapsto \Sigma$ is:

$$\sigma(s_0s_1s_2\ldots) = (s_1s_2s_3\ldots)$$

The map is easily iterated:

$$\sigma^k(s_0s_1s_2\ldots) = (s_ks_{k+1}s_{k+2}\ldots)$$

We can now define a dynamical system on Σ using the shift map. We can look for periodic points etc, just as we have for other dynamical systems.

The fixed points under σ are simply the sequences of all 0 and all 1:

$$(000...)$$
 and $(111...)$

The periodic points of period n must be of the form:

$$(s_0s_1s_2...s_{n-1} \ s_0s_1...s_{n-1}...) = (\overline{s_0s_1...s_{n-1}})$$

Hence there are 2^n points of period n — note that some of these are certainly going to have prime period less than n.

Similarly one can find eventually fixed and eventually periodic points.

Theorem. The shift map is a continuous function.

A reminder about continuity:

Definition. Let $F: X \mapsto X$ be a function on a set X with a metric d. F is continuous at $x_0 \in X$ if $\forall \epsilon > 0$ there is a $\delta > 0$ such that if $d[x, x_0] < \delta$ then $d[F(x), F(x_0)] < \epsilon$. If F is continuous at all points in X then we say that F is a continuous function.

The proof of the theorem is not too complicated. If two points are distance ϵ apart in Σ then their first n + 1 terms must be the same for $1/2^n < \epsilon$. If we go backwards then *before* we apply the shift map to these two points their first n + 2 terms need to agree in order for them to be close together... and so that when we apply the shift map the first n + 1 terms still agree.

Hence if we pick $\delta < 1/2^{n+1}$ then any two points that are distance δ apart must agree in their first n + 2 terms. Applying σ to these points mean that their first n + 1 terms must agree (since we have cut off the first element of each sequence). This means that they are a distance $< 1/2^n$ apart. We picked n so that $1/2^n < \epsilon$. Hence we are done.

6.3 Three properties of a chaotic system

Definition (Devaney). Devaney gives the following definition of a chaotic dynamical system. A dynamical system $F: X \mapsto X$ is *chaotic* if:

- 1. Periodic points of F are dense in X.
- 2. F is transitive.
- 3. F depends sensitively on initial conditions.

Definition. Let X be a set and let Y be a subset of X. Y is a dense subset of X if for any point $x \in X$ and any $\epsilon > 0$ there is a point $y \in Y$ a distance less than ϵ from x.

Lemma. The periodic points of σ form a dense subset of Σ .

Proof. Pick a point $x = (x_0 x_1 x_2 \dots)$ and an $\epsilon > 0$. Pick *n* such that $1/2^n < \epsilon$. If we construct a new point $y = (y_0 y_1 y_2 \dots)$ such that $y_k = x_k$ for $k = 0, 1, \dots, n$, then by the proximity theorem the distance between *x* and *y* is less than $1/2^n$.

So in order for the set of periodic points to be dense in Σ we need to construct a periodic point within ϵ of x — hence we need a periodic point, y, whose first n + 1 terms agree with those of x. Hence let $y = (\overline{x_0 x_1 x_2 \dots x_n})$ (*i.e.* repeat the first n + 1 terms of x). It is clear that y is periodic and by the proximity theorem it is within ϵ of x.

Definition. A dynamical system is transitive if for any pair of points $x, y \in X$ and any $\epsilon > 0$ there is another point $z \in X$ such that the orbit of z comes within ϵ of both x and y.

Lemma. The shift map is transitive.

Proof. Pick any x and y in Σ and an $\epsilon > 0$. We will construct a z whose orbit comes within ϵ of both x and y. Pick n such that $1/2^n < \epsilon$. This means that if a new point has its first n+1 terms the same as those of x then by the proximity theorem it is within ϵ of x (similarly for y).

Construct the following sequence:

$$z = (\underbrace{01}_{1 \text{ blocks}} \underbrace{00\ 01\ 10\ 11}_{2 \text{ blocks}} \underbrace{000\ 001\ldots}_{3 \text{ blocks}} \ldots)$$

That is we glue together all sequences of length 1 and then all sequences of length 2 etc etc. Hence any sequence of length n will appear in z at some point.

Now consider the first n + 1 terms of x. These are a sequence of length n + 1 — hence they must (by construction) appear somewhere in z. Thus there is a k_1 such that the first n + 1 terms of $\sigma^{k_1}(z)$ are the same as those of x — hence the orbit of z comes within ϵ of x. Similarly there exists k_2 such that the first n + 1 terms of $\sigma^{k_2}(z)$ are the same as those of y. Hence the orbit of z comes within ϵ of both x and y.

Definition. A dynamical system F depends sensitively on initial conditions if there is a $\beta > 0$ such that for any $x \in X$ and $\epsilon > 0$ there exists a $y \in X$ within ϵ of x and a k > 0 such that $F^k(x)$ and $F^k(y)$ are at least β apart.

This definition says that there is some "error bar" = β . Given this error bar no matter which x we pick and which little region around it, we can find a new point y in this region so that the orbits of x and y will begin to diverge, and at some point they will be at least β apart.

Lemma. The dynamical system defined by the shift map depends sensitively on initial conditions.

Proof. Put $\beta = 1$. Now pick any $x \in \Sigma$ and any $\epsilon > 0$. Then pick *n* such that $1/2^n < \epsilon$. We now pick a point close (within ϵ) of *x* and show that its orbit will diverge from that of *x* by at least β .

Pick $y \neq x$, such that $d[x, y] < 1/2^n$. This means that the first n + 1 terms of x and y are the same. Because $x \neq y$ there exists k > n such that $x_k \neq y_k$. Consider now the points $\sigma^k(x)$ and $\sigma^k(y)$. The first term $\sigma^k(x)$ is x_k and the first term of $\sigma^k(y)$ is $y_k \neq x_k$. Hence the distance between these two points is:

$$d[\sigma^{k}(x), \sigma^{k}(y)] = \sum_{n \ge 0} \frac{|s_{n+k} - t_{n+k}|}{2^{n}} \ge \frac{|s_{k} - t_{k}|}{2^{0}} = 1$$

Thus the orbits of x and y diverge by at least β .

Combining the previous three lemmas gives:

Theorem. The shift map defines a chaotic dynamical system.