5 Topological conjugacy - summary

Definition. Some basic function definitions:

- A function $f: X \mapsto Y$ is 1 to 1 or injective if:
- if $f(a)=f(b)$ then $a=b$.
- equivalently, if $a \neq b$ then $f(a) \neq f(b)$.
- That is f maps distinct elements to distinct elements.
- A function $f: X \mapsto Y$ is onto or surjective if:
- For all $y \in Y$ there exists $x \in X$ such that $f(x)=y$.
- That is, every element in Y has at least one element in X that maps to it under f. Every element in Y has a preimage in X.

Definition. A function $h: X \mapsto Y$ is a homeomorphism if

- h is 1 to 1 (or injective)
- h is onto (or surjective)
- h is continuous
- h^{-1} is also continuous.

Definition. Let $F: X \mapsto X$ and $G: Y \mapsto Y$ be two functions. We say that F and G are topologically conjugate if there exists a homeomorphism $h: X \mapsto Y$ such that:

$$
h \circ F=G \circ h \quad \text { or equivalently, } \quad h(F(x))=G(h(y))
$$

Such a homeomorphism h is called a topological conjugacy.

- Let us define two different dynamical systems using $F: X \mapsto X$ and $G: Y \mapsto Y$.
- If F and G are topologically conjugate, then the dynamics they define on X and Y are equivalent, and the conjugacy h shows how orbits in one set map to orbits in the the other set.
- Consider the orbit of a point x_{0} under F :

$$
\left\{x_{0}, x_{1}=F\left(x_{0}\right), x_{2}=F^{2}\left(x_{0}\right), x_{3}=F^{3}\left(x_{0}\right), \ldots\right\}
$$

- Let $h: X \mapsto Y$ be a conjugacy that satisfies:

$$
h \circ F=G \circ h \quad \text { or } \quad h(F(x))=G(h(x))
$$

- Then we can find the image of x_{0} under h

$$
y_{0}=h\left(x_{0}\right)
$$

and define its orbit in Y under G :

$$
\left\{y_{0}, y_{1}=G\left(y_{0}\right), y_{2}=G^{2}\left(y_{0}\right), y_{3}=G^{3}\left(y_{0}\right), \ldots\right\}
$$

- These two orbits are equivalent under h. That is $y_{k}=h\left(x_{k}\right)$ for all $k \geq 0$.
- Consider the point y_{n}. We can obtain it in two different ways:

$$
y_{n}=h\left(x_{n}\right)=h\left(F^{n}\left(x_{0}\right)\right)
$$

and also

$$
y_{n}=G^{n}\left(y_{0}\right)=G^{n}\left(h\left(x_{0}\right)\right)
$$

or a bit more pictorially:

- So we need to show that $h\left(F^{n}\left(x_{0}\right)\right)=G^{n}\left(h\left(x_{0}\right)\right)$. By the conjugacy condition given above, we can rewrite this as:

$$
\begin{aligned}
G^{n}\left(h\left(x_{0}\right)\right) & =G^{n-1}\left(G\left(h\left(x_{0}\right)\right)\right) \\
& =G^{n-1}\left(h\left(F\left(x_{0}\right)\right)\right) \\
& =G^{n-2}\left(G\left(h\left(F\left(x_{0}\right)\right)\right)\right)=G^{n-2}\left(h\left(F^{2}\left(x_{0}\right)\right)\right) \\
& \quad \text { keep "pushing } h \text { to the left } \\
& =G^{n-k}\left(h\left(F^{k}\left(x_{0}\right)\right)\right) \\
\cdots & \\
& =h\left(F^{n}\left(x_{0}\right)\right)
\end{aligned}
$$

as required.

- We can similarly get back from Y and G to X and F using the inverse of h.

Example 1. There is a topological conjugacy between $Q_{-2}(x)=x^{2}-2$ on $[-2,2]$ and the tent map on $[0,1]$:

$$
T(\theta)= \begin{cases}2 \theta & 0 \leq \theta<1 / 2 \\ 2-2 \theta & 1 / 2 \leq x \leq 1\end{cases}
$$

Proof:

- Define $h:[0,1] \mapsto[-2,2]$ by

$$
h(\theta)=2 \cos \pi \theta
$$

- We need to show that $Q(h(\theta))=h(T(\theta))$.
- Let us start with the LHS:

$$
\begin{aligned}
Q(h(\theta)) & =4 \cos ^{2} \pi \theta-2 \\
& =2 \cos 2 \pi \theta \\
& =h(2 \theta)
\end{aligned}
$$

- If we now consider the RHS - since T is made up of two 2 different linear functions we need to check both.
- If $\theta<1 / 2$ then $T(\theta)=2 \theta$ and

$$
h(T(\theta))=h(2 \theta)=Q(h(\theta))
$$

as required.

- If $\theta \geq 1 / 2 T(\theta)=2-2 \theta$ and we need to do a little more work:

$$
\begin{aligned}
h(T(\theta)) & =h(2-2 \theta) \\
& =2 \cos (2 \pi-2 \pi \theta) \\
& =2 \cos (-2 \pi \theta) \\
& =2 \cos (2 \pi \theta)=h(2 \theta)=Q(h(\theta))
\end{aligned}
$$

as required.

- We still need to make sure that h is a homeomorphism.
- h is continuous and so is h^{-1}.
- h is onto - every element of $[-2,2]$ is mapped to by an element of $[0,1]$.
$-h$ is 1 to $1-$ distinct elements of $[0,1]$ map to distinct elements of $[-2,2]-$ check the following plot

Dynamical Systems and Chaos - 620341

