5 Topological conjugacy — summary

Definition. Some basic function definitions:

- A function $f: X \mapsto Y$ is 1 to 1 or injective if:
 - if f(a) = f(b) then a = b.
 - equivalently, if $a \neq b$ then $f(a) \neq f(b)$.
 - That is f maps distinct elements to distinct elements.
- A function $f: X \mapsto Y$ is onto or surjective if:
 - For all $y \in Y$ there exists $x \in X$ such that f(x) = y.
 - That is, every element in Y has at least one element in X that maps to it under f. Every element in Y has a preimage in X.

Definition. A function $h: X \mapsto Y$ is a homeomorphism if

- h is 1 to 1 (or injective)
- *h* is onto (or surjective)
- h is continuous
- h^{-1} is also continuous.

Definition. Let $F : X \mapsto X$ and $G : Y \mapsto Y$ be two functions. We say that F and G are topologically conjugate if there exists a homeomorphism $h : X \mapsto Y$ such that:

 $h \circ F = G \circ h$ or equivalently, h(F(x)) = G(h(y))

Such a homeomorphism h is called a *topological conjugacy*.

- Let us define two different dynamical systems using $F: X \mapsto X$ and $G: Y \mapsto Y$.
- If F and G are topologically conjugate, then the dynamics they define on X and Y are equivalent, and the conjugacy h shows how orbits in one set map to orbits in the the other set.
- Consider the orbit of a point x_0 under F:

{
$$x_0, x_1 = F(x_0), x_2 = F^2(x_0), x_3 = F^3(x_0), \dots$$
}

• Let $h: X \mapsto Y$ be a conjugacy that satisfies:

$$h \circ F = G \circ h$$
 or $h(F(x)) = G(h(x))$

• Then we can find the image of x_0 under h

$$y_0 = h(x_0)$$

and define its orbit in Y under G:

$$\{y_0, y_1 = G(y_0), y_2 = G^2(y_0), y_3 = G^3(y_0), \dots\}$$

- These two orbits are equivalent under h. That is $y_k = h(x_k)$ for all $k \ge 0$.
- Consider the point y_n . We can obtain it in two different ways:

$$y_n = h(x_n) = h(F^n(x_0))$$

and also

$$y_n = G^n(y_0) = G^n(h(x_0))$$

or a bit more pictorially:

$$x_{0} \in X \xrightarrow{F} x_{1} \in X \xrightarrow{F} \dots \xrightarrow{F} x_{n} \in X$$

$$\downarrow h \qquad \qquad \downarrow h \qquad \qquad \downarrow h$$

$$y_{0} \in Y \xrightarrow{G} y_{1} \in Y \xrightarrow{G} \dots \xrightarrow{G} y_{n} \in Y$$

• So we need to show that $h(F^n(x_0)) = G^n(h(x_0))$. By the conjugacy condition given above, we can rewrite this as:

$$G^{n}(h(x_{0})) = G^{n-1}(G(h(x_{0})))$$

$$= G^{n-1}(h(F(x_{0})))$$

$$= G^{n-2}(G(h(F(x_{0})))) = G^{n-2}(h(F^{2}(x_{0})))$$
keep "pushing h to the left
$$= G^{n-k}(h(F^{k}(x_{0})))$$
...
$$= h(F^{n}(x_{0}))$$

as required.

• We can similarly get back from Y and G to X and F using the inverse of h.

5 TOPOLOGICAL CONJUGACY — SUMMARY

Example 1. There is a topological conjugacy between $Q_{-2}(x) = x^2 - 2$ on [-2, 2] and the tent map on [0, 1]:

$$T(\theta) = \begin{cases} 2\theta & 0 \le \theta < 1/2\\ 2 - 2\theta & 1/2 \le x \le 1 \end{cases}$$

Proof:

• Define $h: [0,1] \mapsto [-2,2]$ by

$$h(\theta) = 2\cos\pi\theta$$

- We need to show that $Q(h(\theta)) = h(T(\theta))$.
- Let us start with the LHS:

$$Q(h(\theta)) = 4\cos^2 \pi \theta - 2$$

= $2\cos 2\pi \theta$
= $h(2\theta)$

- If we now consider the RHS since T is made up of two 2 different linear functions we need to check both.
- If $\theta < 1/2$ then $T(\theta) = 2\theta$ and

$$h(T(\theta)) = h(2\theta) = Q(h(\theta))$$

as required.

• If $\theta \ge 1/2 T(\theta) = 2 - 2\theta$ and we need to do a little more work:

$$h(T(\theta)) = h(2 - 2\theta)$$

= $2\cos(2\pi - 2\pi\theta)$
= $2\cos(-2\pi\theta)$
= $2\cos(2\pi\theta) = h(2\theta) = Q(h(\theta))$

as required.

- We still need to make sure that h is a homeomorphism.
 - -h is continuous and so is h^{-1} .
 - -h is onto every element of [-2, 2] is mapped to by an element of [0, 1].
 - -h is 1 to 1 distinct elements of [0,1] map to distinct elements of [-2,2] check the following plot

