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1. Introduction

A lattice polygon is a model of ring polymer in a good solvent, and is a useful in the
examination of the entropy properties of ring polymers in dilute solution [12, 8]. Ring
polymers can be knotted [13, 9, 40], and this topological property can be modeled by
examining knotted polygons in a three dimensional lattice. The effects of knotting (and
linking) on the entropic properties of knotted ring polymers remains little understood,
apart from empirical data collected via experimentation on knotted ring polymers
(for example, knotted DNA molecules [47]) or by numerical simulations of models
of knotted ring polymers [42, 3]). Knots in polymers are generally thought to have
effects on both the physical [48] and thermodynamic properties [49] of the polymer,
but these effects are difficult to understand in part because the different knot types in
the polymer may have different properties.

A polygon in a regular lattice L is composed of a sequence of distinct vertices
{a0, a1, . . . , an} such that ajaj+1 and ana0 are lattice edges for each j = 0, 1, . . . , n−1.
Two polygons are said to be equivalent if the first is translationally equivalent to
the second. Such equivalence classes of polygons are unrooted, and we abuse this
terminology by referring to these equivalence classes as (lattice) polygons. In figure 1
we display three polygons in regular cubic lattices. The polygon on the left is a lattice
trefoil knot in the simple cubic (SC) lattice. In the middle a lattice trefoil is displayed
in the face-centered cubic (FCC) lattice, while in the right hand panel an example of
a lattice trefoil in the body-centered cubic (BCC) lattice is illustrated.

Figure 1. Lattice trefoils (of knot type 3+
1 in the standard knot tables [6]) in

three dimensional cubic lattices. On the left a lattice trefoil is embedded in the
simple cubic lattice. In the middle a lattice trefoil in the face-centered cubic
lattice is illustrated, while the right panel is a realisation of a lattice trefoil in the
body-centered cubic lattice.

A lattice polygon has length n if it is composed of n edges and n vertices. The
number of lattice polygons of length n is the number of distinct polygons of length n,
denoted by pn. The function pn is the most basic combinatorial quantity associated
with lattice polygons, and log pn is a measure of the entropy of the lattice polygon at
length n.

Determining pn in regular lattices is an old and difficult combinatorial problem
[16]. Observe that p2n+1 = 0 for n ∈ N in the SC lattice, and it known that the
growth constant µ defined by the limit

lim
n→∞

p1/n
n = µ > 0 (1)

exists and is finite in the SC lattice [16] if the limit is taken through even values of
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n. This result can be extended to other lattices, including the FCC and the BCC
lattices, using the same basic approach in reference [16] (and by taking limits through

even numbers in the BCC). In the hexagonal lattice it is known that µ =
√

2 +
√

2
[11].

In three dimensional lattices polygons are models of ring polymers. Knotted
polygons are similarly a model of knotted ring polymers, see for example reference
[13] on the importance of topology in the chemistry of ring polymers, and [9] on the
occurrence of knotted conformations in DNA.

1.1. Knotted Polygons

Let S1 be a circle. An embedding of S1 into R
3 is an injection f : S1 → R

3. We say
that f is tame if it contains no singular points, and a tame embedding is piecewise
linear and finite if the image of f is the union of line segments of finite length in R

3.
A tame piecewise linear embedding of S1 into R

3 is is also called a polygon.
Tame embeddings S1 into R

3 are tame knots, and the set of polygons compose a
class of piecewise linear knots denoted by Kp. If the class of all lattice polygons (for
example, in a lattice L) is denoted by P, then P ⊂ Kp so that each lattice polygon
is also a tame and piecewise linear knot in R

3. This defines the knot type K of every
polygon in a unique way. In particular, two polygons in P are equivalent as knots if
and only if they are ambient isotopic as tame knots in Kp.

Define pn(K) to be the number of lattice polygons in L, of length n and knot type
K, counted modulo equivalence under translations in L. Then pn(K) is the number of
unrooted lattice polygons of length n and knot type K. Observe that pn(K) = 0 if n is
odd, and hence, consider pn(K) to be a function on even numbers; pn(K) : 2N → N.

It follows that pn(01) = 0 if n < 4 and p4(01) = 3 in the SC lattice where 01 is
the unknot (the simplest knot type). If K 6= 01 is not the unknot, then in the SC
lattice it is known that pn(K) = 0 if n < 24 and that p24(K) > 0 [10]. In particular,
p24(31) = 3328 [43] while pn(K) = 0 if K 6= 01 or K 6= 31.

It is known that

lim sup
n→∞

[pn(K)]
1/n

= µK < µ (2)

in the SC lattice; see reference [46]. If K = 01 is the unknot, then it is known that

lim
n→∞

[pn(01)]
1/n

= µ0 < µ (3)

and it follows in addition that µ0 ≤ µK < µ; see for example [22, 23]. There are
substantial numerical evidence in the literature that µ0 = µK for all knot types K
(see reference [23] for a review, and references [41, 29, 33] for more on this). Overall,
these results are strong evidence that the asymptotic behaviour of pn(K) is given to
leading order to

pn(K) ' CKnα0+NK−3µn
0 , (4)

where NK is the number of prime components of knot type K, and α0 is the
entropic exponent which is independent of knot type. The amplitude CK is dependent
on the knot type K. In particular, simulations show that the amplitude ratio
[pn(K)/pn(L)] → [CK/CL] 6= 0 if NK = NL [41]; this strongly supports the proposed
scaling in equation (4).

Growth constants for knotted polygons in the FCC and BCC in equations (2)
and (3) have not been examined in the literature, but there is general agreement that
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Figure 2. Concatenating polygons in the SC lattice. The top edge of the polygon
on the left is defined at that edge with lexicographic most midpoint, and the
bottom edge of the polygon on the right as that edge with lexicographic least
midpoint. By translating, and rotating the polygon on the right until its bottom
edge is parallel to the top edge of the polygon on the left, and translated one step
in the X-direction, the two polygons can be concatenated into a single polygon by
inserting the dotted polygon of length four between the two, as illustrated, and
then deleting edges which are doubled up. If the polygon on the left has length
n and knot type K, then it can be chosen in pn(K) ways, and if the polygon on
the right has length m and knot type L, then it can be chosen in pm(L)/2 ways,
since its bottom edge much be parallel to the top edge of the polygon on the left.
This shows that pn(K)pm(L) ≤ 2 pn+m(K#L), since the concatenated polygon
has length n + m and knot type the connected sum K#L of the the knot types
K and L. This construction generalises in the obvious way to the FCC and BCC
lattices.

the methods of proof in the SC lattice will demonstrate these same relations in the
FCC and BCC. In particular, by concatenating SC lattice polygons as schematically
illustrated in figure 2, it follows that

pn(K)pm(L) ≤ 2 pn+m(K#L) (5)

where K#L is the connected sum of the knot types K and L.
Similar results are known in the FCC lattice: One has that pn(01) = 0 if n < 3,

and p3(01) = 8. Similarly, pn(31) = 0 if n < 15, while p15(31) = 64. Observe that
in the FCC lattice, pn(K) is a function on N; pn(K) : N → N. That is, there are
polygons of odd length.

The construction in figure 2 generalises to the FCC lattice. In this case, the top
vertex of the polygon is that vertex with lexicographic most coordinates. The top
vertex t is incident with two edges, and the top edge is that edge with midpoint with
lexicographic most coordinates. The top edge of a FCC polygon is parallel to one of
six possible directions, giving six different classes of polygons. One of these classes is
the most numerous, containing at least pn(K)/6 polygons and with top edge parallel
to (say) direction β, if the polygons has length n and knot type K.

Similarly, the bottom vertex and bottom edge of a FCC polygon of length m
and knot type L can be identified, and there is a direction γ such that the class of
FCC polygons with bottom edge is parallel to γ is the most numerous and is at least
pm(L)/6.

By choosing a polygon of knot type K, top vertex t and length n with top edge
parallel to β, and a second polygon of length m, bottom vertex b, with bottom edge
parallel to γ, these polygons can be concatenated similarly to the construction in
figure 2 by inserting a polygon of length (say) N + 2 between them. Accounting for
the number of choices of the polygons on the left and right, and for the change in the
number of edges, this shows that

pn(K)pm(L) ≤ 36 pn+m+N (K#L) (6)

in the FCC, where N is independent of n and m . The polygon of length N + 2 is
inserted to join the top and bottom edges of the respective polygons, since they may
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not be parallel a priori to the concatenation. Some reflection shows that the choice
N = 2 is sufficient in this case.

The relation in equation (6) shows that [pn−N/36] and [pn−N(01)/36] are
supermultiplicative functions in the FCC, and this proves existence of the limits

limn→∞ [pn]1/n = µ and limn→∞ [pn(01)]
1/n = µ0 in the FCC [19]. In addition,

with µK defined in the FCC as in equation (2), it also follows from equation (6) that
µ01

≤ µK ≤ µ. That µK < µ would follow from a pattern theorem for polygons in
the FCC (and it is widely expected that the methods in reference [36, 37] will prove
a pattern theorem for polygons in the FCC).

In the BCC lattice one may verify that pn(01) = 0 if n < 4, and p4(01) = 12.
Similarly, pn(31) = 0 if n < 18, while p18(31) = 1584. Observe that in the BCC lattice
pn(K) is a function on even numbers; pn(K) : 2N → N, similar to the case in the SC
lattice.

Finally, arguments similar to the above show that in the BCC lattice there exists
an N independent of n and m such that

pn(K)pm(L) ≤ 16 pn+m+N (K#L). (7)

Thus, in the BCC one similarly expects that limn→∞ [pn]
1/n

= µ and

limn→∞ [pn(01)]
1/n

= µ0 exists in the BCC, and with µK defined in the BCC as
in equation (2), it also follows from equation (6) that µ0 ≤ µK ≤ µ. Similarly, a
pattern theorem will show that µK < µ. In the BCC one may choose N = 2.

Generally, these results are consistent with the hypothesis that µK = µ0 in the
BCC and FCC lattices, while the asymptotic form for pn(K) in equation (4) is expected
to apply in these lattices as well. By computing amplitude ratios [CK/CL] in reference
[32] for a selection of knots, strong numerical evidence for equation (4) in the BCC
and FCC were obtained.

1.2. Minimal Length Knots and the Lattice Edge Index

Given a knot type K there exists an nK such that pnK
(K) > 0 but pn(K) = 0 for

all n < nK . The number nK is the minimal length of the knot type K in the lattice
[10, 27]. For example, if K = 3+

1 (a right-handed trefoil knot) then in the SC lattice
it is known that p24(3

+
1 ) = 1664 while pn(3+

1 ) = 0 for all n < 24. Thus n3+

1

= 24

is the minimal length of (right-handed) trefoils in the SC lattice [45]. Observe that
n3+

1

= n3−

1

(= n31
), and this is generally true for all knot types.

Similar results are not available in the BCC and FCC, although numerical
simulations have shown that n3+

1

= 18 in the BCC and n3+

1

= 15 in the FCC

[31, 32, 33].
The construction in figure 2 shows that

nK#K ≤ 2 nK and nK#L ≤ nK + nL (8)

in the SC lattice. More generally, observe that for non-negative integers p,

nKp ≤ p nK . (9)

This in particular shows that the minimal lattice edge index defined by

inf
p

[

nKp

p

]

= lim
p→∞

[

nKp

p

]

= αK (10)

exists, and moreover, αK ≥ 4(bK − 1), where bK is the bridge number of the knot
type K; see references [27, 20, 23] for details. Since bK ≥ 2 if K 6= ∅, it follows that
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αK ≥ 4 for non-trivial knots types in the SC lattice. Observe that α01
= 0 and that

it is known that 4 ≤ α3+

1

≤ 17 [27, 20].

In the BCC and FCC lattices one may consult equations (6) and (7) to see that
for non-negative integers,

nKp#Kq ≤ nKp + nKq + N. (11)

Thus, nKp + N is a subadditive function of p, and hence

inf
p

[

nKp + N

p

]

= lim
p→∞

[

nKp

p

]

= αK (12)

exists [19]. Moreover, as in the SC lattice, one may present arguments similar to those
in the proof of theorem 2 in reference [21] to see that αK ≥ 3(bK − 1) in the FCC and
αK ≥ 2(bK − 1) in the BCC. Hence, if K is not the unknot, then αK ≥ 3 in the FCC
and αK ≥ 2 in the BCC.

We shall also work with the total number of distinct knot types K with nK ≤ n,
denoted by Qn. It is known that Qn = 1 if n < 24 in the SC lattice, and that Qn = 3
if 24 ≤ n < 30 [45], also in the SC lattice. Qn grows exponentially with n.

1.3. The Entropy of Minimal Length Knotted Polygons

If n = nK, then pn(K) > 0 for a given knot type. The entropy of the knot type K
at minimal length is given by log pn(K) when n = nK .‖ More generally, the entropy
of lattice knots of minimal length and knot type K can be studied by defining the
density of the knot type K at minimal length by

PK = pnK
(K). (13)

Then one may verify that P∅ = 3 in the SC lattice, and P∅ = 12 in the BCC lattice
while P∅ = 8 in the FCC lattice.

It is also known that P3+

1

= 1664 in the SC lattice [45]. Since 31 is a chiral knot

type, it follows that the total number of minimal length lattice polygons of knot type
31 is given by P31

= P3+

1

+ P3−

1

= 3328.

Generally there does not appear to exist simple relations between PK and PKm .
However, PKm should increase exponentially with m, since nKm is bounded linearly
with m if K is a non-trivial knot type [21]. Thus, the entropic index per knot
component of the knot type K can be defined by

lim sup
m→∞

[

logPKm

m

]

= γK . (14)

Obviously, since P∅m = 4 for all values of m, it follows that γ∅ = 0. Also, γK ≥ 0 for
all knot types K. Showing that γK > 0 for all non-trivial knot types K is an open
question.

The collection of PK minimal length lattice knots are partitioned in symmetry
(or equivalence) classes by rotations and reflections (which compose the octahedral
group, which is the symmetry group of the cubic lattices). Since the group has 24
elements, each symmetry class may contain at most 24 equivalent polygons. The total
number of symmetry classes of minimal length lattice knots of type K is denoted by
SK . For example, in the SC lattice it is known that S01

= 1 and this class has 3
minimal length lattice knots of length 4. It has been shown that S31

= 142 in the SC,
of which 137 classes have 24 members each and 5 have 8 members each [45].

‖ Sometimes, this notion will be abused when we refer to pn(K) as the (lattice) entropy of polygons
of length n and knot type K.
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Figure 3. A negative crossing (left) and a positive crossing (right) of the
intersections in a regular projections of a simple closed curved. The signs are
assigned using a right hand rule.

1.4. The Mean Absolute Writhe of Minimal Length Knotted Polygons

The writhe of a closed curve is a geometric measure of its self-entanglement. It is
defined as follows: The projection of a closed curve in R

3 onto a geometric plane is
regular if all multiple points in the projection are double points, and if projected arcs
intersect transversely at each double point.

Intersections (referred to as “crossings”) in a regular projection are signed by the
use of a right hand rule: The curve is oriented and the sign is assigned as illustrated
in figure 3. The writhe of the projected curve is the sum of the signed crossings. The
writhe of the space curve is the average writhe over all possible regular projections of
the curve. For a lattice polygon ω this is defined by

Wr(ω) =
1

4π

∫

u∈S2

Wr(ω, u) (15)

where Wr(ω, u) is the writhe of the projection along the unit vector u (which takes
values in the unit sphere S2 – this is called the writhing number of the projection).
This follows because almost all projections of ω are regular.

The writhe of a closed curve was introduced by Fuller [14]. It was shown by
Lacher and Sumners [38] that the writhe of a lattice curve is given by the average of
the linking number of ω with its push-offs ω + εu, for u ∈ S2, and ε > 0 small. That
is,

Wr(ω) =
1

4π

∫

u∈S2

Lk(ω, ω + εu). (16)

In the SC lattice, this simplifies to the average linking number of ω with four of its
push-offs into non-antipodal octants:

Wr(ω) =
1

4

4
∑

i=1

Lk(ω, ω + ui) (17)

where, for example, one may take u1 = (0.5, 0.5, 0.5), u2 = (0.5,−0.5, 0.5), u3 =
(−0.5, 0.5, 0.5) and u4 = (−0.5,−0.5, 0.5). This shows that 4 Wr(K) is an integer.

The average writhe 〈Wr(K)〉n of polygons of knot type K and length n is defined
by

〈Wr(K)〉n =
1

pn(K)

∑

|ω|=n

Wr(ω) (18)

where the sum is over all polygons of length n and knot type K. If K is an achiral
knot, then 〈Wr(K)〉n = 0 for each value of n [26].
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The average absolute writhe 〈|Wr(K)|〉n of polygons of knot type K and length
n is defined by

〈|Wr(K)|〉n =
1

pn(K)

∑

|ω|=n

|Wr(ω)| (19)

where the sum is over all polygons of length n and knot type K.
The averaged writhe WK and the average absolute writhe |W|K of lattice knots of

both minimal length and knot type K are defined as the average and average absolute
writhe of polygons of knot type K and minimal length:

WK = 〈Wr(K)〉n|n=nK
; |W|K = 〈|Wr(K)|〉n|n=nK

. (20)

The writhe of polygons in the BCC and FCC lattices can also be determined by
computing linking numbers between polygons and their push-offs [39]. Normally, the
writhes in these lattices are related to the average writhing numbers of projections of
the polygons onto planes normal to a set of given vectors.

The writhe of a polygon in the FCC lattice is normally an irrational number [15].
The prescription for determining the writhe of polygons in the FCC lattice can be
found in reference [39] and is as follows: Put α = 3 arcsec 3− π and β = (π/2− α)/3.
Then the writhe of a polygon ω is given by

Wr(ω) =
1

2π

(

α

4
∑

i=1

Wr(ω, ui) + β

8
∑

i=1

Wr(ω, vi)

)

(21)

where the vectors ui are defined by ui = (±3/
√

22,±3/
√

22, 2/
√

22) for all possible
choices of the signs, and the vectors vi are defined by vi = (±

√
5/

√
6,±1/

√
30, 2/

√
30),

(±1/
√

30,±
√

5/
√

6, 2/
√

30), (±1/
√

38,±1/
√

38, 6/
√

38) again for all possible choices
of the signs. The writhing number Wr(ω, ui) of ω is defined as before as the sum of
the signed crossings in the projected ω on a plane normal to ui.

In the BCC lattice the writhe of a polygon ω can be computed by

Wr(ω) =
1

12

12
∑

i=1

Wr(ω, ui) (22)

where the vectors ui are defined by ui = (±1/
√

10, 3/
√

10, 0), (±1/
√

10, 0, 3/
√

10),
(0,±1/

√
10, 3/

√
10), (0, 3/

√
10,±1/

√
10), (3/

√
10,±1/

√
10, 0), (3/

√
10, 0,±1/

√
10),

for all possible choices of the signs.
By appealing to the Calugareanu and White formula Lk = Tw + Wr [7, 50] for a

ribbon, one can compute Wr(ω, ui) by creating a ribbon (ω, ω + εui) with boundaries
ω and ω + εui (this is a push-off of ω by ε in the (constant) direction of ui). Since the
twist of this ribbon is zero, one has that Wr(ω, ui) = Wr(ω +εui, ui) = Lk(ω, ω +εui),
and the writhe can be computed by the linking number of the knot Wr(ω, ui) and its
push-off Wr(ω, ui) + εui.

Equation (22) shows that 12 Wr(ω) is an integer in the BCC lattice. Thus, the
mean writhe of a finite collections of polygons in the BCC lattice is a rational number.

1.5. Curvature of Lattice Knots

The total curvature of an SC lattice polygon is equal to π/2 times the number of right
angles between two edges. The average total curvature of minimal length polygons of
knot type K is denoted in units of 2π by KK (that is, the average total curvature is
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2πKK). Obviously K01
= 1 in the SC lattice, since every minimal length unknotted

polygon of length 4 is a unit square of total curvature 2π. For other knot types the
total curvature of a polygon is an integer multiple of π/2, and the mean curvature is
thus a rational number times 2π. Hence, for a knot type K, the average curvature of
minimal length length polygons of knot type K is given by

〈CK〉 = 2πKK (23)

where KK is a rational number.
Similar definitions hold for polygons in the BCC and FCC. In each case the lattice

curvature of a polygon is the sum of the complements of angles inscribed between
successive edges.

In the FCC the curvature of a polygon is a summation over angles of sizes 0, π/3
and 2π/3. Hence 2πKK is a rational number similarly to the case in the SC. This
gives a similar definition to equation (23) of KK for minimal length lattice polygons
of knot type K. Obviously, K01

= 1 in the FCC, since each minimal lattice polygon
of knot type 01 is an elementary equilateral triangle.

The situation is somewhat more complex in the BCC lattice. The curvature of a
polygon is the sum over angles of sizes arccos(1/

√
3), π − arccos(1/

√
3) and 0. This

shows that the average curvature of minimal length polygons of knot type K is of the
generic form

〈CK〉 = BK arccos(1/
√

3) + 2πKK (24)

where BK and KK are rational numbers. By examining the 12 minimal length
unknotted polygons of length 4 in the BCC, one can show that B01

= −2 and
K01

= 3/2.
The minimal lattice curvature CK (as opposed to the average curvature) of SC

lattice knots were examined in reference [28].¶ For example, it is known that C01
= 2π

while C31
= 6π in the SC lattice [28]. Bounds on the minimal lattice curvature in the

SC lattice can also be found in terms of the minimal crossing number CK or the bridge
number bK of a knot. In particular, CK ≥ max

{(

3 +
√

9 + 8CK

)

π/4 , 3πbK

}

. These
bounds are in particular good enough to prove that C947

= 9π. A minimal lattice
curvature index νK is also proven to exist in reference [28], in particular

lim
n→∞

CKn

n
= νK (25)

exists and CKn ≥ nνK. It is known that ν01
= 0 but that 2π ≤ ν31

≤ 3π in the SC
lattice, and one expect that 2πKKn ≥ CKn ≥ 2πn in the SC lattice. This shows that
KKn increases at least as fast as n in the SC lattice. For more details, see reference
[28].

2. GAS Sampling of knotted polygons

Knotted polygons can be sampled by implementing the GAS algorithm [30].
The algorithm is implemented using a set of local elementary transitions (called
“atmospheric moves” [29]) to sample along sequences of polygon conformations. The
algorithm is a generalisation of the Rosenbluth algorithm [44], and is an approximate
enumeration algorithm [24, 25].

¶ Observe that the minimal lattice curvature of a lattice knot does not necessarily occur at minimal
length.
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Figure 4. BFACF elementary moves on polygons in the cubic lattice. These
(reversible) moves are of two types: Type I decreases or increases the length of
the polygon by two edges, while Type II is a neutral move which maintains the
length of the polygon. A move which increases the length of the polygon is a
positive move, while negative moves decrease the length of the polygon.

The GAS algorithm can be implemented in the SC lattice on polygons of
given knot type K using the BFACF elementary moves [1, 2, 5] to implement the
atmospheric moves [31, 32]. These elementary moves are illustrated in figure 3. This
implementation is irreducible on classes of polygon of fixed knot type [35].

The BFACF moves in figure 4 are either positive (increase the length of a polygon),
neutral (leave the length unchanged) or negative (decrease the length of a polygon).
These moves define the atmosphere of a polygon. The collection of possible positive
moves constitutes the positive atmosphere of the polygon. Similarly, the collection
of neutral moves composes the neutral atmosphere while the set of negative moves is
the negative atmosphere of the polygon. The the size of an atmosphere of a polygon
ω is the number of possible successful elementary moves that can be performed to
change it into a different conformation. We denote the size of the positive atmosphere
of a polygon ω by a+(ω), of the neutral atmosphere by a0(ω), and of the negative
atmosphere by a−(ω).

The GAS algorithm is implemented on cubic lattice polygons as follows (for more
detail, see references [31, 32]). Let ω0 be a lattice polygon of knot type K, then
sample along a sequence of polygons 〈ω0, ω1, ω2, . . .〉 by updating ωi to ωi+1 using an
atmospheric move.

Each atmospheric move is chosen uniformly from the collection of possible moves
in the atmospheres. That is, if ωj has length `j then the probabilities for positive,
neutral and negative moves are given by

Pr(+) ∝ β`j
a+(ωj), Pr(0) ∝ a0(ωj), and Pr(−) ∝ a−(ωj) (26)

where the parameters β` were introduced in order to control the transition probabilities
in the algorithm. It will be set in the simulation for “flat sampling”. That, it will be
chosen approximately equal to the ratio of average sizes of the positive and negative

atmospheres of polygons of length `: β` ≈ 〈a+〉`

〈a
−
〉`

. This choice makes the average

probability of a positive atmospheric move roughly equal to the probability of a
negative move at each value of `.

This sampling produces a sequence 〈ωj〉 of states and we assign a weight

W (ωn) =

[

a−(ω0) + a0(ω0) + β`0a+(ω0)

a−(ωn) + a0(ωn) + β`n
a+(ωn)

]

×
n
∏

j=0

β
(`j−`j+1)
`j

. (27)

to the state ωn. The GAS algorithm is an approximate enumeration algorithm in the
sense that the ratio of average weights of polygons of lengths n and m tends to the

10



ratio of numbers of such polygons. That is,

〈W 〉n
〈W 〉m

=
pn(K)

pm(K)
. (28)

The algorithm was coded using hash-coding such that updates of polygons and polygon
atmospheres were done in O(1) CPU time. This implementation was very efficient,
enabling us to perform billions of iterations on knotted polygons in reasonable real
time on desk top linux workstations. Minimal length polygons of each knot type were
sieved from the data stream and hashed in a table to avoid duplicate discoveries.
The lists of minimal length polygons were analysed separately by counting symmetry
classes, and computing writhes and curvatures.

Implementation of GAS sampling in the FCC and BCC lattices proceeds similar to
the implementation in the SC lattice. It is only required to define suitable atmospheric
moves analogous to the SC lattice moves in figure 4, and to show that these moves
are irreducible on classes of FCC or BCC lattice polygons of fixed knot types.

The BCC lattice has girth four, and local positive, neutral and negative
atmospheric moves similar to the SC lattice moves in figure 4 can be defined in a
very natural way. These are illustrated in figure 5. Observe that the conformations
in this figure are not necessarily planar, in particular because minimal length lattice
polygons in the BCC lattice are not necessarily planar. This collection of elementary
moves is irreducible on classes of unrooted lattice polygons of fixed knot type K in
the BCC lattice [32, 33].

In the FCC lattice the generalisation of the BFACF elementary moves is a single
class of positive atmospheric moves and their inverse, illustrated in figure 6. This
elementary move (and its inverse) is irreducible on classes of unrooted lattice polygons
of fixed knot type K in the FCC lattice [32]. The implementation of this elementary
move using the GAS algorithm is described in references [31, 32, 33].
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Figure 5. Elementary moves on polygons in the BCC lattice. These (reversible)
moves are of two types: Type I decreases or increases the length of the polygon
by two edges, while Type II is a neutral move which maintains the length of the
polygon.

11



Ia: ...................................................................................
......
.......
.......
.......
......
.......
.......
.......
.......
.......
.........................................................................................................................................................• •

•

• • ...................................................... ................ ......................................................................
....................................................................................................................................................................................................................................• • • •.................... ..

..
..
..
..
..
..
..
..
..
.....................

◦

Figure 6. The Elementary move on polygons in the FCC lattice. This is the
only class of elementary moves in this lattice, there are no neutral moves.

3. Numerical Results

GAS algorithms for knotted polygons in the SC, BCC and FCC lattices were coded
and run for polygons of lengths n ≤ M where 500 ≤ M ≤ 700, depending on the knot
type (the larger values of M were used for more complicated compound knots). In
each simulation, up to 500 GAS sequences each of length 107 states were realised with
the purpose of counting and collecting minimal length polygons. In most cases the
algorithm efficiently found minimal conformations in short real time, but a few knots
proved problematic, and in particular compound knots. For example, knots types
(3+

1 )5 and (41)
3 required weeks of CPU time, while (3+

1 )2(3−1 )2 proved to be beyond
the memory capacity of our computers.

Generally, our simulations produced lists of symmetry classes of minimal length
knotted polygons in the three lattices. Our data (lists of minimal length knotted
polygons) are available at the website in reference [51].

3.1. Minimal Knots in the Simple Cubic Lattice

3.1.1. Minimal Length SC Lattice Knots: The minimal lengths nK of prime knot
types K are displayed in table 1. We limited our simulations to prime knots up to
eight crossings. In addition, a few knots with more than eight crossings were included
in the table, including the first two knots in the knot tables to 12 crossings, as well
as 942 and 947. The minimal lengths of some compound knots (up to eight crossings),
as well as compound trefoils up to (3+

1 )6 and figure eights up to (41)
6, were also

examined, and data are displayed in table 2.
The results in tables 1 and 2 confirms data previously obtained for minimal knots

in the simple cubic lattice, see for example [21] and in particular reference [45] for
extensive results on minimal length knotted SC polygons.

The number of different knot types with minimal length nk ≤ n can be estimated
and grows exponentially with n. In fact, if Qn is the number of different knot types
with nK ≤ n, then Qm ≥ Qn if m ≥ n. Obviously, Qn ≤ pn, so that

Q = lim sup
n→∞

Q1/n
n ≤ lim

n→∞
p1/n

n = µ (29)

by equation (1).
On the other hand, suppose that N > 0 prime knot types (different from

the unknot) can be tied in polygons of length m (that is Qm ≥ N). Then by
concatenating k polygons of different prime knot types as in figure 2, it follows that

QNm ≥∑N
k=0

(

N
k

)

= 2N . In other words

Qn ≥ 2n/m. (30)

if n = Nm where N is the number of non-trivial prime knot types that can be tied
in a polygon of length n. For example, if m = 28, then N = 1, and thus Q28 ≥ 2.

Taking n → ∞ implies that N → ∞ as well so that lim infn→∞ Q
1/n
n ≥ 1.

12



nK Prime Knot types

4 01

24 31

30 41

34 51

36 52

40 61, 62, 63

42 819

44 71, 73, 74, 77, 820

46 72, 75, 76, 821

48 83, 87, 942

50 81, 82, 84, 85, 86, 88, 89, 810, 811, 813, 814, 816, 947

52 812, 815, 817, 818

54 91

56 92

60 101, 102

64 111

66 112

70 121, 122

Table 1. Minimal Length of Prime Knots in the SC lattice.

In other words, 1 ≤ Q ≤ µ.

Thence, one may estimate Q
1/n
n , and increasing n in Q

1/n
n should give increasingly

better estimates of Q. In addition, if Q
1/n
n approaches a limit bigger than one, then

Q > 1 and the number of different knot types that can be tied in a polygon of length
n increases exponentially with n.

By examining the data in tables 1 and 2, one observes that Q30 = 4 so that
Q ≈ 41/30 ≈ 1.0472 . . .. Increasing n to 40 gives Q40 = 16, so that Q ≈ 1.07177 . . ..
If n = 50, then Q50 ≥ 74, hence Q ≈ 1.08989 . . .. These approximate estimates of Q
increases systematically, suggesting the estimates are lower bounds, and that Q > 1.

The number of distinct knot types with nK = n is Qn = Qn − Qn−1, and since
Qn ≥ Qn−1 and Qn = Qn+o(n), it follows that Qn = 0 if n is odd, and Qn = Qn+o(n)

for even values of n.
There appears to be several cases of regularity amongst the minimal lengths of

knot types in tables 1. The sequence of (N, 2)-torus knots with N ≥ 3 (these are the
knots {31, 51, 71, 91, 111}) increases in steps of 10 starting in 24. Similarly, the sequence
of twist knots {41, 61, 81, 101, 121} increments in 10 starting in 30, as do the sequence
of twist knots {52, 72, 92, 112}, but starting in 36. The sequence {41, 62, 82, 102, 122}
also increments in 10, starting at 30 as well. A discussion of these patterns can be
found in reference [21] (see figure 3 therein). There are no proofs that these patterns
will persist indefinitely.

In table 2 the estimated minimal lengths nK of a few compounded knots are
given. These data similarly exhibit some level of regularity. For example, the family
of compounded positive trefoils

{

(3+
1 )n

}

increases in steps of 16 starting in 24. From
these data, one may bound the minimal lattice edge index of positive trefoils (defined
in equation (10)). In particular, αK ≤ nKp/p, and if K = 3+

1 and p = 6, then
it follows that α3+

1

≤ 17 1
3 . This does not improve on the upper bound given in

13



nK Compound Knot Types

40 (3+
1 )2, (3+

1 )(3−1 )
46 (3+

1 )(41)
50 (5+

1 )(3+
1 ), (5+

1 )(3−1 ), (5+
2 )(3−1 )

52 (41)
2, (5+

2 )(3+
1 )

56 (3+
1 )3, (3+

1 )2(3−1 )
72 (3+

1 )4

74 (4+
1 )3

88 (3+
1 )5

96 (41)
4

104 (3+
1 )6

118 (41)
5

140 (41)
6

Table 2. Minimal Length of Compound Knots in the SC lattice.

references [27] and [20], but if the increment of 16 persists, then if p = 10 one would
obtain α3+

1

≤ 16 4
5 < 17. Preliminary calculations indicated that finding the minimal

edge number for (3+
1 )10 would be a difficult simulation, and this was not pursued. At

this point, the argument illustrated in figure 4 in reference [21] proves that α3+

1

≤ 17,

and the data above suggest that α31
= 24+16n for n ≤ 6. If this pattern persists, then

αK would be equal to 16, but there is no firm theoretical argument which validates
this expectation.

Similar observations apply to the family of compounded figure eight knots {(41)
n}.

The minimal edge numbers for n ≤ 6 are displayed in table 2 and increments by 22
such that α41

= 30 + 22n for n ≤ 6. This suggest that α41
= 22, but the best upper

bound from the data in table 2 is 23 2
3
.

3.1.2. Entropy of minimal lattice knots in the SC lattice: Minimal length lattice knots
were sieved from the data stream, then classified and stored during the simulations,
which was allowed to continue until all, or almost all, minimal length lattice were
discovered. In several cases a simulation was repeated in order to check the results.
We are very sure of our data if PK . 1000, reasonable certain if 1000 . PK . 10000,
less certain if 10000 . PK . 100000, and we consider the stated value of PK to be
only a lower bound if PK & 100000 in table 3.

Data on entropy, lattice writhe and lattice curvature, were collected on prime
knot types up to eight crossings, and also the knot types 91, 91, 942, 947, 101 and 102.
The SC lattice data are displayed in table 3. As before, the minimal length of a knot
type K is denoted by nK , and PK = cnK

(K) is the total number of minimal length
SC lattice knots of length nK . For example, there are 3328 minimal length trefoils (of
both chiralities) of length n31

= 24. Since 31 is chiral, P3+

1

= 3328/2 = 1664.

The unknot has minimal length 4, which is a unit square polygon in a symmetry
class of 3 members which are equivalent under lattice symmetries. The 3328 minimal
lattice trefoils are similarly partitioned into 142 symmetry classes, of which 137 classes
has 24 members and 5 classes has 8 members each. These partitionings into symmetry
classes are denoted by 31 for the unknot, and 2413785 for lattice polygons of knot type
31 (of both chiralities) or 1213745 for lattice polygons of (say) right-handed knot type

14



Knot Simple Cubic Lattice

nK PK SK WK |W|K KK

01 4 3 1 31
0 0 1

31 24 3328 142 2413785
3 735

1664
3 735

1664
3 801

1664

41 30 3648 152 24152
0 33

152
4 1

152

51 34 6672 278 24278
6 127

556
6 127

556
4 459

556

52 36 114912 4788 244788
4 5057

9576
4 5057

9576
5 61

9576

61 40 6144 258 24254124
1 49

512
1 49

512
5 223

512

62 40 32832 1368 241368
2 1079

1368
2 1079

1368
5 65

456

63 40 3552 148 24148
0 29

148
4 36

37

71 44 33960 1415 241415
9 61

283
9 61

283
6 322

1415

72 46 336360 14016 2414014122
5 10539

14015
5 10539

14015
6 811

28030

73 44 480 20 2420
7 19

40
7 19

40
5 31

40

74 44 168 7 247
5 4

7
5 4

7
5 2

7

75 46 9456 394 24394
7 107

394
7 107

394
6 83

394

76 46 34032 1418 241418
3 625

1418
3 625

1418
5 614

709

77 44 504 21 2421 43
84

43
84

5 1
12

81 50 23736 990 24988122
2 813

1978
2 813

1978
6 514

989

82 50 91680 3820 243820
5 2081

3820
5 2081

3820
6 1259

3820

83 48 12 1 121
0 0 5 91

97

84 50 47856 1994 241994
1 2613

3988
1 2613

3988
6 1675

3988

85 50 1152 48 2448
5 5

8
5 5

8
6 5

24

86 50 11040 460 24460
4 7

920
4 7

920
6 273

920

87 48 48 2 242
2 3

4
2 3

4
5 3

4

88 50 3120 130 24130
1 21

260
1 21

260
6 89

260

89 50 35280 1470 241470
0 527

2940
6 307

980

810 50 1680 70 2470
3 1

140
3 1

140
5 121

140

811 50 192 8 248
4 1

8
4 1

8
6 3

8

812 52 2592 108 24108 71
216

71
216

6 187
216

813 50 26112 1088 241088
1 399

2176
1 399

2176
5 2099

2176

814 50 720 30 2430
3 59

60
3 59

60
6 29

60

815 52 80208 3342 243342
7 2957

3342
7 2957

3342
6 549

1114

816 50 96 4 244
2 5

8
2 5

8
5 7

8

817 52 53184 2216 242216
0 1099

4432
6 321

4432

818 52 3552 148 24148
0 10

37
5 71

148

819 42 13992 592 245741218
8 885

1166
8 885

1166
5 267

583

820 44 240 10 2410
2 1

10
2 1

10
4 9

10

821 46 56040 2335 242335
4 2499

4670
4 2499

4670
5 373

467

91 54 345960 14417 241441483
12 283

4805
12 283

4805
7 5763

9610

92 56 3281304 136721 24136721
6 105057

136721
6 105057

136721
7 96676

136721

942 48 27744 1156 241156
1 953

2312
1 953

2312
5 1939

2312

947 50 13680 570 24570
2 4

5
2 4

5
5 47

95

101 60 462576 19298 24192501248
3 12507

38548
3 12507

38548
8 5341

38548

102 60 871296 36304 2436304
8 42761

72608
8 42761

72608
7 56813

72608

Table 3. Data on prime knot types in the SC Lattice.
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3+
1 .

Entropy per unit length of minimal polygons of knot type K is defined by

EK =
logPK

nK
. (31)

This is a measure of the tightness of the minimal knot. If EK is small, then there
are few conformations that the minimal knot can explore, and such a knot is tightly
embedded in the lattice (and its edges are relatively immobile). If EK , on the other
hand, is large, then there are a relatively large conformational space which the edges
may explore, and such a knot type is said to be loosely embedded.

The unknot has E01
= (log 3)/4 = 0.27467 . . ., which will be small compared to

other knot types, and is thus tightly embedded.
The entropy per unit length of the (right-handed) trefoils is E3+

1

= (log 1664)/24 =

0.3090 . . ., and it appears that the edges in these tight embeddings are similarly
constrained to those in the unknot. Edges in the (achiral) knot 41 has E41

=
(log 3648)/30 = 0.2733 . . . < E3+

1

, and are more constrained than those in the trefoil.

Similarly, for five crossing knots one finds that E5+

1

= 0.2386 . . . while E5+

2

= 0.3223 . . ..

The entropy per unit length seems to converge in families of knot
types. For example in the (N, 2)-torus knot family {3+

1 , 5+
1 , 7+

1 , 9+
1 } one gets

{0.3090, 0.2386, 0.2214, 0.2234} to four digits accuracy. Similarly, the family of twist
knots {3+

1 , 5+
2 , 7+

2 , 9+
2 } gives {0.3090, 0.3044, 0.2616, 0.2555}, again to four digits.

Similar patterns are observed for the families {6+
1 , 8+

1 , 10+
1 } ({0.2008, 0.1876, 0.2059}),

and {6+
2 , 8+

2 , 10+
2 } ({0.2427, 0.2147, 0.2164}). Further extensions of the estimates of

PK for more complicated knots would be necessary to test these patterns, but the
scope of such simulations are beyond our available computing resources.

Finally, there are some knots with very low entropy per unit length. These include
7+
3 (0.1246), 7+

4 (0.1007), 7+
7 (0.1257), 83 (0.08065), 8+

7 (0.06621), 8+
11 (0.09129), 8+

16

(0.07742) and 8+
20 (0.1088). These knots are tightly embedded in the SC lattice in

their minimal conformations, with very little entropy per edge available.
The distribution of minimal knotted polygons in symmetry classes in table 3 shows

that most minimal knotted polygons are not symmetric with respect to elements of
the octahedral group, and thus fall into classes of 24 distinct polygons. Classes with
fewer elements, (for example 12 or 8), has symmetric embeddings of the embedded
polygons. Such symmetric embeddings are the exception rather than the rule in table
3: For example, amongst the listed prime knot types in that table, only eight types
admit to a symmetric embedding.

3.1.3. The Lattice Writhe and Curvature: The average writhe WK , the average
absolute writhe |W|K and the average curvature KK (in units of 2π) of minimal
length polygons are displayed in table 3. The results are given as rational numbers,
since these numbers can be determined exactly from the data. Observe that the writhe
of simple cubic lattice polygons are known to be rational numbers [38, 26, 34], hence
the average over finite sets of polygons will also be rational. In addition, the average
writhe WK is non-negative in table 3 since the right handed knot was in each case
used in the simulation.

In most cases in table 3 it was observed that |WK| = |W|K , with the exception
of some achiral knots, which have |W|K > 0 while WK = 0. The average absolute
writhe was zero in only two cases, namely the unknot and the knot 83. Generally, the
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Knot Simple Cubic Lattice

n PK SK WK |W|K KK

31 24 3328 142 2413785
3 735

1664
3 735

1664
3 801

1664

26 281208 11721 2411713128
3 10773

23434
3 10773

23434
3 23017

23434

28 14398776 599949 24599949
3 40144

85707
3 40144

85707
4 267364

599949

Table 4. SC Lattice Trefoils of lengths 24, 26 and 26.

average and absolute average writhe of achiral knots are not equal, but the unknot
and 83 are exceptions to this rule.

It is known that achiral knots have zero average writhe [34], and so WK = 0
if the knot type K is achiral. For example, W31

= 3 735
1664 ≈ 3.4417 . . . (for right

handed trefoils), and hence 31 is a chiral knot type. This numerical estimate for W31

is consistent with the results of simulations done elsewhere [26, 34], and it appears
that W31

is only weakly dependent on the length of the polygons. For example, in
table 4 the average and average absolute writhe of polygons with knot type 3+

1 and
lengths 24, 26 and 28 are listed. Observe that while W31

and |W|K do change with
increasing n, it is also so that the change is small, that is, it changes from 3.44170 . . .
for n = 24 to 3.45971 . . . to 3.46848 . . . as n increments from n = 24 to n = 28. These
numerical values are close to the estimates of average writhes made elsewhere in the
literature for polygons of significant increased length, and the average writhe seems
to cluster about the estimate 3.44 . . . in those simulations [26, 4, 43].

Generally, the average and average absolute writhe increases with crossing number
in table (3). However, in each class of knot types of crossing number C > 3 there are
knot types with small average absolute writhe (and thus with small average writhe).
For example, amongst the class of knot types on eight crossings, there are achiral knots
with zero absolute writhe (83), as well as chiral knot types with average absolute writhe
small compared to the average absolute writhe of (say) 81. For example, the average
absolute writhe of 818 is 10/37. The obvious question following from this observation
is on the occurrence of such knot types: Since there are chiral knot types with average
absolute writhe less than 1 for knots on 4, 6, 7 and 8 crossings in table 3, would such
chiral knot types exist for all knot types on C ≥ 6 crossings?

The curvature of a cubic lattice polygon is a multiple of π/2, and hence the average
curvature will similarly be a rational number times 2π: That is, 〈CK〉 = 2πKK where
〈CK〉 is the average curvature of minimal length polygons of knot type K and KK is
the rational number displayed in the last column of table 3. For example, the average
curvature of minimal length lattice trefoils is 6

[

801
832

]

π ≈ 6.96274π.
The variability in KK is less than that observed for the writhe WK in classes

of knot types of given crossing number in table 3. Generally, increasing the crossing
number increases the minimal length of the knot type, with a similar increase in the
number of right angles in the polygon. This increase is reflected in the increase of KK

with increasing nK .
The ratio KK/nK stabilizes quickly in families of knot types. For example, for

(N, 2)-torus knots, this ratio decreases with increasing nK as {0.25, 0.141, 0.142, 0.141}
as K increases along {31, 51, 71, 91}. Similar patterns can be determined for other
families of knot types. For example, for the twist knots K = {41, 61, 81, 101}, the
ratio is also stable, but a little bit lower: {0.145, 0.136, 0.131, 0.136}.

Finally, it was observed before equation (25) that the minimal curvature of a
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nK Prime Knot types

3 01

15 31

20 41

22 51

23 52

27 61, 62

28 63, 819

29 71

30 72, 73, 74, 820

31 75, 76, 77, 821

32 942

34 81, 82, 83, 84, 85, 86, 87, 88, 89, 810

35 811, 812, 813, 814, 815, 816, 817, 91, 947

36 818

37 92

40 101, 102

Table 5. Minimal Length of knot types in the FCC lattice.

lattice knot in the SC lattice, CK , can be defined and that C01
= 2π, C31

= 6π and
C947

= 9π. The average curvatures in table 3 exceeds these lower bounds in general,
with equality only for the unknot: For example, K31

= 6 801
832π and K947

= 10 94
95π.

However, in each of these knot types there are realizations of polygons with both
minimal length and minimal curvature.

3.2. Minimal Knots in the Face Centered Cubic Lattice

3.2.1. Minimal Length FCC Lattice Knots: The minimal lengths nK of prime knot
types K in the FCC are displayed in table 5. Prime knots types up to eight crossings
are included, together with a few knots with nine crossings, as well as the knots 101

and 102. In general the pattern of data in table 5 are similar to the results in the SC
lattice in table 1. Observe that while the knot type 6∗ can be tied with 40 edges in
the SC lattice, in the FCC lattice 61 and 62 can be tied with fewer edges than 63.
Similarly, the knot 71 can be tied with fewer edges than other seven crossing knots in
the FCC lattice, but not in the SC lattice. There are other similar minor changes in
the ordering of the knot types in table 5 compared to the SC lattice data in table 1.

Similar to the argument in the SC lattice, one may define Qn to be the number
of different knot types with nK ≤ n in the FCC lattice. It follows that Qn ≤ pn, so
that

Q = lim sup
n→∞

Q1/n
n ≤ lim

n→∞
p1/n

n = µ (32)

by equation (1).
By counting the number of distinct knot types with nK ≤ n in tables 5 one may

estimate Q by computing Q
1/n
n : Observe that Q3 = 1 and Q15 = 2, this shows that

Q ≈ 1.041 . . .. By increasing n, one finds that Q35 ≥ 37, and this gives the estimate
Q ≈ 1.10550 . . .. This is larger than the estimate of Q in the SC lattice, and may be
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some evidence that the exponential rate of growth of Qn in the FCC lattice is strictly
larger than in the SC lattice: That is, QFCC > QSC.

Similar to the case in the SC, the number of distinct knot types with nK = n
is Qn = Qn − Qn−1, and since Qn ≥ Qn−1 and Qn = Qn+o(n), it follows that
Qn = Qn+o(n).

There are several cases of (semi)-regularity amongst the minimal lengths of knot
types in tables 5. (N, 2)-torus knots with 3 ≤ N ≤ 5 (these are the knots {31, 51, 71})
have increases in steps of 7 starting in 15. This pattern, however, fails for the
next member in this sequence, since n91

= 35, an increment of 6 from 71. Similar
observations are true of the sequence of twist knots. The sequence {41, 61, 81} has
increments of 7 starting in 20, but this breaks down for 101, which increments by 6
over n81

. The first three members of the sequence of twist knots {52, 72, 92} similarly
have increments in steps of 7, and if the patterns above applies in this case as well,
then this should break down as well. Observe that these results are different from the
results in the SC lattice. In that case, the patterns persisted for the knots examined,
but in the FCC lattice the patterns break down fairly quickly.

3.2.2. Entropy of minimal lattice knots in the FCC Lattice: Data on entropy on
minimal length polygons were collected of FCC lattice polygons with prime knot
types up to eight crossings, and also knot the knots 91, 91, 942, 947, 101 and 102. The
results are displayed in table 6. The minimal length of a knot type K is denoted by
nK , and PK = cnK

(K) is the total number of minimal length FCC lattice knots of
length nK . For example, there are 64 minimal length trefoils (of both chiralities) of
length n31

= 15 in the FCC lattice. Since 31 is chiral, P3+

1

= 64/2 = 32.

Each set of minimal length lattice knots are divided into symmetry classes under
action of the symmetry group of rotations and reflections in the FCC lattice. For
example, the unknot has minimal length 3 and it is a member of a symmetry class
of 8 FCC lattice polygons of minimal length which are equivalent under action of the
symmetry elements of the octahedral group.

The 64 minimal length FCC lattice trefoils are similarly divided into 4 symmetry
classes, of which 2 classes have 24 members and 2 classes have 8 members each (which
are symmetric under action of some of the group elements). This partitioning into
symmetry classes are denoted by 81 for the unknot, and 24282 for the trefoil (of both
chiralities).

Similar to the case for the SC lattice, the reliability of the data in table 6 decreases
with increasing values of PK. We are very certain of our data if PK . 1000, reasonable
certain if 1000 . PK . 10000, less certain if 10000 . PK . 100000, and we consider
the stated value of PK to be only a lower bound if PK & 100000 in table 6.

The entropy per unit length of minimal polygons of knot type K is similarly
defined in this lattice in equation (31). The unknot has relative large entropy:
E01

= (log 8)/3 = 0.693147 . . ..
The entropy per unit length of the (right-handed) trefoil is E3+

1

= (log 32)/15 =

0.2310 . . ., which is smaller than the entropy of this knot type in the SC. This implies
that there are fewer conformations per edge, and the knot may be considered to be
more tightly embedded.

The entropy per unit length of the (achiral) knot 41 is E41
= (log 2796)/20 =

0.3968 . . ., and is less than the trefoil (however, in the SC lattice E(3+
1 ) > E(41)). For

five crossing knots one finds that E5+

1

= 0.1760 . . . while E5+

2

= 0.2587 . . .; these are
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Knot Face Centered Cubic Lattice

nK PK SK WK |W|K KK

01 3 8 1 81
0 0 1

31 15 64 4 24282
3.3245203 3.3245203 2 3

4

41 20 2796 130 24106121866
0 0.0649554 3 175

699

51 22 96 4 244
6.04086733 6.04086733 3 1

2

52 23 768 32 2432
4.58773994 4.58773994 3 3

4

61 27 19008 792 24792
1.30062599 1.30062599 4 449

1188

62 27 5040 210 24210
2.68566969 2.68566969 4 199

630

63 28 102720 4280 244280
0 0.10145467 4 11519

25680

71 29 4080 170 24170
8.83566369 8.83566369 4 919

1020

72 30 4128 172 24172
5.94373229 5.94373229 4 37

43

73 30 960 40 2440
7.30408669 7.30408669 4 3

5

74 30 96 4 244
6.17547989 6.17547989 4 5

6

75 31 27456 1144 241144
7.31767838 7.31767838 4 853

858

76 31 4896 204 24204
3.29853635 3.29853635 5 2

17

77 32 1296 54 2454
0.66279311 0.66279311 5 35

162

81 34 447816 18696 24186221274
2.51971823 2.51971823 5 11155

18659

82 34 116016 4834 244834
5.39777682 5.39777682 5 7991

14502

83 34 19200 800 24800
0 0.06471143 5 73

240

84 34 41088 1712 241712
1.39528958 1.39528958 5 863

1712

85 34 2976 130 241181212
5.40078543 5.40078543 5 12

31

86 34 9408 392 24392
3.94736084 3.94736084 5 10

21

87 34 1258 52 2452
2.70284845 2.70284845 5 21

52

88 34 3024 126 24126
1.28153619 1.28153619 5 9

14

89 34 5184 216 24216
0 0.0808692 5 20

81

810 34 1728 72 2472
2.82452035 2.82452035 5 5

18

811 35 298128 12422 2412422
3.97223690 3.97223690 5 11713

18633

812 35 16416 684 24684
0.13164234 0.13164234 5 173

229

813 35 274320 11430 2411430
1.30541189 1.30541189 5 9256

17145

814 35 27360 1140 241140
4.00297606 4.00297606 5 1109

1710

815 35 36432 1518 241518
7.98074463 7.98074463 5 215

414

816 35 15552 648 24648
2.66666668 2.66666668 5 17

36

817 35 5184 216 24216
0 0.08782937 5 35

108

818 36 41196 1776 24166212104610
0 0.12891984 5 1817

3433

819 28 276 12 2411121
8.45506005 8.45506005 4

820 30 74088 3087 243087
2.04596806 2.04596806 4 3137

6174

821 31 17856 744 24744
4.66448881 4.66448881 4 2039

2232

91 35 192 8 248
11.58173466 11.58173466 5 3

4

92 37 229824 9576 249576
7.13091283 7.13091283 6 2

21

942 32 96 4 244
1.02043366 1.02043366 4 5

12

947 35 3072 128 24128
2.62349866 2.62349866 5 19

48

101 40 77688 3246 2432281218
3.74646905 3.74646905 6 11237

19422

102 40 8928 372 24372
8.14499622 8.14499622 6 671

1116

Table 6. Data on prime knot types in the FCC Lattice.
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Knot Face Centred Cubic Lattice

n PK SK WK |W|K KK

31 15 64 4 24282
3.3245203 3.3245203 2 3

4

16 3672 153 24153
3.34714432 3.34714432 2 404

459

17 104376 4349 244349
3.36103672 3.36103672 3 853

13047

Table 7. Data on trefoils of lengths 15, 16 and 17 in the FCC lattice.

related similarly to the results in the SC lattice.
The entropy per unit length in the family of (N, 2)-torus knots {3+

1 , 5+
1 , 7+

1 , 9+
1 }

changes as {0.2310, 0.1760, 0.2628, 0.1304} to four digits accuracy. These results do not
show the regularity observed in the SC: While the results for {3+

1 , 5+
1 , 9+

1 } decreases
in sequence, the result for 7+

1 seems to be unrelated.
The family of twist knots {3+

1 , 5+
2 , 7+

2 , 9+
2 } gives {0.2310, 0.2587, 0.2544, 0.3149},

again to four digits, and this case the knot 9+
2 seems to have a value higher

than expected. Similar observations can be made for the families {6+
1 , 8+

1 , 10+
1 }

({0.3392, 0.3623, 0.2642}), and {6+
2 , 8+

2 , 10+
2 } ({0.2901, 0.3226, 0.2101}). Further

extensions of the estimates of PK for more complicated knots would be necessary
to determine if any of these sequences approach a limiting value.

Finally, there are some knots with very low entropy per unit length. These include
7+
4 (0.1290), 9+

1 (0.1106), and 9+
42 (0.1210). These knots are tightly embedded in the

FCC lattice in their minimal conformations, with very little entropy per edge available.
The distribution of minimal knotted polygons in symmetry classes in table 6 shows

that most minimal knotted polygons are not symmetric with respect to elements of the
octahedral group, and thus fall into classes of 24 distinct polygons. Classes with fewer
elements, (for example 12 or 8), contains symmetric embeddings of the embedded
polygons. Such symmetric embeddings are the exception rather than the rule in table
6: This is similar to the observations made in the SC lattice.

3.2.3. The Lattice Writhe and Curvature in the FCC Lattice: The average writhe
WK , the average absolute writhe |W|K and the average curvature KK (in units of 2π)
of minimal length FCC lattice polygons are displayed in table 6. The results for the
average writhe are given in floating point numbers since these are irrational numbers
in the FCC lattice, as seen for example from equation (21).

The lattice curvature of a given FCC lattice polygon, on the other hand, is a
multiple of π/3, and thus 2πKK, where KK is average curvature, is a rational number.
In table 6 the average curvature KK is given in units of 2π, so that the exact values of
this average quantity can be given as a rational number. For example, one infers from
table 6 that the average curvature of the unknot is 2π, while the average curvature of
31 is 2 3

4 (2π) = 5 1
2π.

Similar to the results in the SC lattice, the absolute average and average absolute
writhes in table 3 are equal, except for achiral knots. This pattern may break down
eventually, but persists for the knots we considered. In the case of achiral knots one
has, as for the SC lattice, WK = 0 while |W|K > 0. Observe that the average absolute
writhe of 83 is positive in the FCC, but it is zero in the SC.

The average writhe at minimal length of 3+
1 is 3.3245 . . . in the FCC, while it is

slightly larger in the SC, namely 3.4417. Increasing the value of n from 15 to 16 and
17 in the FCC lattice and measuring the average writhe gives the results in table 7,
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which shows that the average writhe increases slowly with n. However, the average
writhe remains, as in the SC lattice, quite insensitive to n.

Generally, the average and average absolute writhe increases with crossing number
in table 6. However, in each class of knot types of crossing number C > 3 there are knot
types with small average absolute writhe (and thus with small average writhe). For
example, amongst the class of knot types on eight crossings, there are achiral knots
with small absolute writhe (83), as well as chiral knot types with average absolute
writhe small compared to the average absolute writhe of (say) 81. For example, the
average absolute writhe of 89, 817 and 818 are small compared to other eight crossing
knots (except 83).

While the average writhe is known not to be rational in the FCC, it is
nevertheless interesting to observe that the average writhe of 816 is almost exactly
8/3 (it is approximately 41472.00002289/15552 = 8.0000000044/3). Similarly, the
average writhe of the figure eight knot is very close to 13/200 (it is approximately
12.99108/200).

The average curvature KK tends to increase consistently with nK and with
crossing number of K. The ratio KK/nK stabilizes quickly in families of knot
types. For example, for (N, 2)-torus knots, this ratio decreases with increasing nK

as {0.183, 0.159, 0.169, 0.164} as K increases along {31, 51, 71, 91}. These estimates
are slightly larger than the similar estimates in the SC lattice. Similar patterns can
be determined for other families of knot types. For example, for the twist knots
K = {41, 61, 81, 101}, the ratio is also stable and close in value to the twist knot
results: {0.163, 0.162, 0.165, 0.164}.

Finally, the average curvature of the trefoil in the FCC is 5 1
2π and this is less than

the lower bound 6π of the minimal curvature of a trefoil in the SC lattice [28]. The
minimal curvature of 947 at minimal length in the SC lattice is 9π [28], but in the FCC
lattice our data show no FCC polygons of knot type 947 and minimal length n = 35
has curvature less than 10 1

6π. In other words, there is no realisation of a polygon of
knot type 947 in the FCC at minimal length nK = 35 with minimal curvature 9π. The
average curvature of minimal length FCC lattice knots of type 947 is still larger than
the these lower bounds, namely 10 19

24π.

3.3. Minimal Knots in the Body Centered Cubic Lattice

3.3.1. Minimal Length BCC Lattice Knots: The minimal lengths nK of prime knot
types K in the BCC are displayed in table 8. We again included prime knot types up
to eight crossings, together with a few knots with nine crossings, as well as the knots
101 and 102.

In general the pattern of data in table 8 is similar to the results in the SC and
FCC lattices in tables 1 and 8. The spectrum of knots corresponds well up to five
crossings, but again at six crossings some differences appear. For example, in the
BCC lattice one observes that n61

< n62
and n61

< n63
, in contrast with the patterns

observed in the SC and FCC lattices.
The rate of increase in the number of knot types of minimal length nK ≤ n in the

BCC lattice may be analysed in the same way as in the SC or FCC lattice. Similar to
the argument in the SC lattice, one may define Qn to be the number of different knot
types with nK ≤ n in the FCC lattice. It follows that Qn ≤ pn, so that

Q = lim sup
n→∞

Q1/n
n ≤ lim

n→∞
p1/n

n = µ (33)
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nK Prime Knot types

4 01

18 31

20 41

26 51, 52

28 61

30 62, 62

32 71, 72, 76, 77, 819

34 73, 74, 75, 820, 821

36 81, 83, 812

38 82, 84, 85, 86, 87, 88, 89, 810

38 811, 813, 814, 815, 816, 817

40 818, 91, 92

42 101

44 102

Table 8. Minimal Length of Knots types in the BCC lattice.

by equation (1).
By counting the number of distinct knot types with nK ≤ n in table 8 one may

estimate Q: Observe that Q4 = 1 and Q18 = 2, this shows that Q ≈ 21/16 = 1.035 . . ..
By increasing n while counting knot types to estimate Qn, one finds that Q38 ≥ 35,
and this gives the lower bound Q ≈ 351/40 = 1.0929 . . .. This is larger than the
lower bound on Q in the SC lattice, and may again be taken as evidence that Qn

is exponentially small in the SC lattice when compared to the BCC lattice. That is
QSC < QBCC .

Similar to the case in the SC lattice, the number of distinct knot types with
nK = n is Qn = Qn −Qn−1, and since Qn ≥ Qn−1 and Qn = Qn+o(n), it follows that
Qn = Qn+o(n) for even values of n (note that Qn = 0 of n is odd, since the BCC is a
bipartite lattice).

There are several cases of (semi)-regularity amongst the minimal lengths of knot
types in tables 5. (N, 2)-torus knots (these are the knots {31, 51, 71, 91}) increase in
steps of 6 or 8 starting in 18. The increments are {8, 6, 8} in this particular case,
and there are no indications that this will be repeating, or whether it will persist
at all. Similar observations are true of the sequence of twist knots. The sequence
{41, 61, 81, 101} seems to have increments of 8 starting in 20, but this breaks down for
101, which increments by 6 over 81. Similar observations can be made for the sequence
of twist knots {52, 72, 92}.

3.3.2. Entropy of minimal lattice knots in the BCC lattice: Data on entropy of
minimal length polygons in the BCC lattice are displayed in table 9. The minimal
length of a knot type K is denoted by nK , and PK = cnK

(K) is the total number of
minimal length BCC lattice knots of length nK . For example, there are 1584 minimal
length trefoils (of both chiralities) of length n31

= 18 in the FCC lattice. Since 31 is
chiral, P3+

1

= 1584/2 = 792.

Each set of minimal length lattice knots are divided into symmetry classes under
the symmetry group of rotations and reflections in the BCC lattice. For example, the
unknot has minimal length 4 and there are two symmetry classes, each consisting of
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Knot Body Centered Cubic Lattice

nK PK SK WK |W|K BK ,KK

01 4 12 2 62
0 0 −2, 3

2

31 18 1584 66 2466
3 40

99
3 40

99
11 4

33
, 21

22

41 20 12 2 62
0 0 16, 0

51 26 14832 618 24618
6 83

1854
6 83

1854
19 38

103
, 177

206

52 26 4872 203 24203
4 129

203
4 129

203
17 23

203
, 164

203

61 28 72 4 242122
1 1

3
1 1

3
24, 0

62 30 8256 344 24344
2 30

43
2 30

43
20 21

43
, 35

43

63 30 3312 138 24138
0 4

69
19 35

69
, 56

69

71 32 1464 61 2461
9 9 24 38

61
, 1

72 32 24 1 241
6 6 28, 0

73 34 22488 937 24937
7 919

2811
7 919

2811
25
55

937, 745
937

74 34 11208 468 24466122
5 464

467
5 464

467
24 394

467
, 340

467

75 34 8784 366 24366
7 196

549
7 196

549
22 24

61
, 47

61

76 32 48 2 242
3 1

3
3 1

3
26, 0

77 32 24 1 241 2
3

2
3

24, 0

81 36 744 32 2430122
2 2

3
2 2

3
32, 0

82 38 118080 4920 244920
5 782

1845
5 782

1845
28 153

410
, 431

492

83 36 108 6 24462
0 0 32, 0

84 38 93984 3916 243916
1 4715

11748
1 4715

11748
27 955

1958
, 3849

3916

85 38 7392 318 242981220
5 331

924
5 331

924
29 11

14
, 195

308

86 38 9024 376 24376
4 1

282
4 1

282
28 87

94
, 117

188

87 38 47856 1994 241994
2 2035

2991
2 2035

2991
27 59

997
, 784

997

88 38 34656 1444 241444
1 112

361
1 112

361
26 177

361
, 280

361

89 38 5712 238 24238
0 1

14
26 55

119
, 185

238

810 38 11088 462 24462
2 313

462
2 313

462
25 6

7
, 125

154

811 38 15888 662 24662
4 49

1986
4 49

1986
27 198

331
, 425

662

812 36 12 2 62
0 0 24, 0

813 38 17616 734 24734
1 241

734
1 241

734
25 180

367
, 561

734

814 38 16944 706 24706
4 1

353
4 1

353
25 205

353
, 253

353

815 38 4272 180 24176124
8 1

89
8 1

89
24 52

89
, 71

89

816 38 1056 44 2444
2 29

44
2 29

44
27 15

22
, 23

44

817 38 912 38 2438
0 7

114
24 9

19
, 31

38

818 40 8820 384 24354122466
0 94

735
24 116

735
, 1 81

245

819 32 1110 48 244512261
8 102

185
8 102

185
23 29

185
, 64

185

820 34 117096 4879 244879
2 372

4879
2 372

4879
19 4575

4879
, 1 614

4879

821 34 696 30 2428122
4 43

87
4 43

87
23 23

29
, 14

29

91 40 80928 3372 243372
11 14113

20232
11 14113

20232
32 3287

3372
, 1 2719

3372

92 40 13824 576 24576
7 1

192
7 1

192
29 211

288
, 1 77

96

942 36 2736 114 24114
1 29

171
1 29

171
24 5

57
, 56

57

947 40 68208 2842 242842
2 2033

2842
2 2033

2842
22 1

49
, 3 296

1421

101 42 288 12 2412
3 2

3
3 2

3
38, 0

102 44 9816 409 24409
8 136

409
8 136

409
34 150

409
, 1 299

409

Table 9. Data on knots in the BCC lattice.
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6 BCC lattice polygons of length 4 which are equivalent under action of the elements
of the octahedral group.

The 1584 minimal length BCC lattice trefoils are similarly divided into 66
symmetry classes, each with 24 members. This partitioning into symmetry classes are
denoted by 2466 (66 equivalence classes of minimal length 18 and with 24 members).
Similarly, the symmetry classes of the unknot are denoted 62, namely 2 symmetry
classes of minimal length unknotted polygons, each class with 6 members equivalent
under reflections and rotations of the octahedral group.

Similar to the case for the SC and FCC lattices, the reliability of the data in table
9 decreases with increasing values of PK . We are very certain of our data if PK . 1000,
reasonable certain if 1000 . PK . 10000, less certain if 10000 . PK . 100000, and
we consider the stated value of PK to be only a lower bound if PK & 100000.

The entropy per unit length of minimal polygons of knot type K is similarly
defined in this lattice as in equation (31). The unknot has relative large entropy
E01

= (log 12)/4 = 0.621226 . . ., compared to the entropy of the minimal length unknot
in the SC lattice.

The entropy per unit length of the (right-handed) trefoil is E3+

1

= (log 792)/18 =

0.37080 . . ., which is smaller than the entropy of this knot type in the SC lattice.
This implies that there are fewer conformations per unit length, and the knot may be
considered to be more tightly embedded.

The entropy per unit length of the (achiral) knot 41 is E41
= (log 12)/20 =

0.12424 . . ., and is very small compared to the values obtained in the SC and FCC
lattices. In contrast with the FCC, the relationship between the knot types 3+

1

and 41 in the BCC lattice is similar to the relationship obtained in the SC lattice,
E(3+

1 ) > E(41). Five crossing knots in the BCC lattice have relative large entropies.
One finds that E5+

1

= 0.34274 . . . while E5+

2

= 0.29992 . . ..

The entropy per unit length in the family of (N, 2)-torus knots {3+
1 , 5+

1 , 7+
1 , 9+

1 }
changes as {0.3708, 0.3427, 0.2061, 0.2652} to four digits accuracy. These results do
not show the regularity observed in the SC lattice: While the results for {3+

1 , 5+
1 , 7+

1 }
decreases in sequence, the result for 9+

1 seems to buck this trend.
The family of twist knots {3+

1 , 5+
2 , 7+

2 , 9+
2 } gives {0.3708, 0.3000, 0.0777, 0.2210},

again to four digits, and this case the knot 7+
2 seems to have a value lower

than expected. Similar observations can be made for the families {6+
1 , 8+

1 , 10+
1 }

({0.1280, 0.1644, 0.1183}), and {6+
2 , 8+

2 , 10+
2 } ({0.2775, 0.2891, 0.1932}). Further

extensions of the estimates of PK for more complicated knots would be necessary
to determine if any of these sequences approach a limiting value.

Finally, there are some knots with very low entropy per unit length. These include
41 (0.1242), 6+

1 (0.1280), 7+
2 (0.0777), 7+

6 (0.0993), 7+
7 (0.0777), and 8+

12 (0.0498).
These knots are tightly embedded in the BCC lattice in their minimal conformations,
with very little entropy per edge available.

The distribution of minimal length knotted polygons in symmetry classes in table
6 shows that most minimal knotted polygons are not symmetric with respect to
elements of the octahedral group, and thus fall into classes of 24 distinct polygons.
Classes with fewer elements, (for example 12 or 8), contains symmetric embeddings of
the embedded polygons. Such symmetric embeddings are the exception rather than
the rule in table 9: This is similar to the observations made in the SC and FCC
lattices.
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Knot Body Centered Cubic Lattice

n PK SK WK |W|K BK ,KK

31 18 1583 66 2466
3 40

99
3 40

99
11 4

33
, 21

22

20 236928 9879 2498651214
3 22457

59232
3 22457

59232
9 8369

9872
, 1 12133

19744

22 21116472 879864 248798421222
3 1050094

2639559
3 1050094

2639559
9 41747

879853
, 2 116513

879853

Table 10. Data on trefoils of lengths 18, 20 and 22 in the BCC lattice.

3.3.3. The Lattice Writhe and Curvature: The average writhe WK , the average
absolute writhe |W|K and the average curvature KK (in units of 2π) of minimal length
BCC lattice polygons are displayed in table 9. The writhe Wr(ω) of a BCC lattice
polygon ω is a rational number (since 12Wr(ω) is an integer) as shown in equation
(22). Thus, the average writhe and average absolute writhe of minimal length BCC
lattice polygons are listed as rational numbers in table 9. These results are exact
in those cases where we succeeded in finding all minimal length BCC polygons of a
particular knot type K.

The lattice curvature of a given BCC lattice polygon is somewhat more
complicated. Each BCC lattice polygon ω has curvature which may be expressed in the
form B arccos(1/

√
3)+ 2πC, where B and C are rational numbers. Thus, the average

curvature of minimal BCC lattice polygons of knot type K is given by expressions
similar to equation (24), with BK and KK rational numbers. In table 9 the values of
BK and KK are given for each knot type, as a pair of rational numbers. For example,
the average curvature of the unknot is −2 arccos(1/

√
3)+3π = 7.51414 . . . > 2π. This

shows that some minimal conformations of the unknot are not planar.
Similarly, the average curvature of minimal length polygons of knot type 31 is

given by 11 4
33 arccos(1/

√
3) + 21

11π = 16.6218 . . . < 6π. In other words, the average
curvature of minimal length BCC lattice trefoils is less than 6π, which is the minimal
lattice curvature of SC lattice trefoils. In fact, one may check that this average
curvature is less than 5 1

2π, which is the average curvature for minimal length FCC
lattice polygons. In other words, the embedding of lattice trefoils of minimal length
in the BCC has lower average curvature than either the average curvature in the SC
or FCC lattices.

Similar to the results in the SC and FCC lattices, the average and average absolute
writhes in table 3 are equal, except in the case of achiral knots. If K is an achiral
knot type, then generally WK = 0 while |W|K > 0, similar to the results in the SC
and FCC lattices. Observe that the average absolute writhe of 83 is zero in the BCC
lattice, as it was in the SC lattice (but it is positive in the FCC lattice).

The average writhe at minimal length of 3+
1 is 3

40

99
π in the BCC lattice, which

is slightly smaller than the result in the SC lattice (3 735

1664
). However, it is still larger

than the result in the FCC lattice. Increasing the value of n from 18 to 20 and 22
in the BCC lattice and measuring the average writhe of 3+

1 gives the results in table
10, which shows that the average writhe decreases slowly with n, in contrast with the
trend observed in the FCC lattice. However, the average writhe remains, as in the SC
lattice, quite insensitive to n.

Generally, the average and average absolute writhe increases with crossing number
in table (3). However, in each class of knot types of crossing number C > 3 there are
knot types with small average absolute writhe (and thus with small average writhe).
For example, amongst the class of knot types on eight crossings, there are achiral
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knots with zero absolute writhe (83 and 812), as well as chiral knot types with average
absolute writhe small compared to the average absolute writhe of (say) 82. The knot
types 84, 88, 89, 813, 817 and 818, amongst knot types on eight crossings, also have
average absolute writhe less than 2, which is small when compared to other eight
crossing knots such as 82.

The average curvature of minimal length BCC lattice knots are given in
terms of the rational numbers BK and KK , as explained above. Both BK

and KK tends to increase with nK in table 9. The ratios [BK/nK ,KK/nK]
however, may decrease with increasing nK within families of knot types. For
example, for (N, 2)-torus knots, these ratios decrease with increasing nK as
{[0.618, 0.053], [0.745, 0.033], [0.770, 0.031], [0.824, 0.045]} to three digits accuracy
along the sequence {31, 51, 71, 91}. Similar patterns can be determined for other
families of knot types.

Finally, the average curvature of the trefoil in the BCC lattice is
11 4

33 arccos(1/
√

3) + 21
11π = 16.6218 . . . and this is less than the lower bound 6π of

the minimal curvature of a trefoil in the SC lattice [28]. The minimal curvature of
947 at minimal length in the SC lattice is 9π, but in the BCC our data show that the
minimal curvature is 28.255468 . . . < 9π. In other words, there are minimal length
conformations of the knot 947 in the BCC lattice with total curvature less than the
minimal curvature 9π of this knot in the SC lattice [28].

4. Conclusions

Data for compounded lattice knots were significantly harder to collect than for the
prime knot types. Thus, we collected data in only the SC lattice, and we considered
our data less secure if compared to the data on prime knot types listed in tables 3, 6
and 9. The data for compounded SC lattice knots are presented in table 11. Included
are the first few members of sequences

〈

(3+
1 )N

〉

and
〈

4N
1

〉

and mixed compound knots

up to eight crossings, with (3+
1 )2#(3−1 ) included. We made an attempt to find all

minimal knots of type (3+
1 )2#(3−1 )2 but ran out of computer resources when 7000000

symmetry classes were detected.
Compound knot types in the SC lattice tended to have far larger numbers of

symmetry classes at minimal length, compared to prime knot types with similar
minimal length or crossing numbers. We ran our simulations for up to weeks in
some cases, in an attempt to determine good bounds on the numbers of minimal
length polygons. As in the case of prime knots, certainty about our data decreases
with increasing numbers of symmetry classes, from very certain when PK . 1000, to
reasonably certain when the number exceeds 1000 . PK . 10000, less certain when
10000 . PK . 100000, and the stated value of PK should be considered a lower bound
if PK & 100000.

That is, the data in table 11 for the knot types
〈

(3+
1 )4
〉

,
〈

(3+
1 )5
〉

and
〈

43
1

〉

may
not be exact for PK , symmetry classes and estimates of the writhe and curvature. At
best, those results are lower bounds on the counts, within a few percent of the true
results.

The data in table 11 allows us to make rough estimates of γ31
(see equation (14)).

By taking logarithms of P31
, one gets for γ31

the following estimates with increasing
N : {8.1101, 5.1639, 4.1912, 3.8838, 3.4424}. These values have not settled down and it
is apparent that simulations with more complex compounded knots will be needed to
estimate γK .
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Knot Simple Cubic Lattice

nK PK SK WK |W|K KK

3+
1 24 3328 142 24

137
8
5

3 735
1664

3 735
1664

3 801
1664

(

3+
1

)2
40 30576 1275 24

1273
12

2
6 45

49
6 45

49
5 278

637
(

3+
1

)3
56 288816 12034 24

12034
10 1711

4376
10 1711

4376
7 13603

48136
(

3+
1

)4
72 5582160 232606 24

232582
8
24

13 799403
930360

13 799503
930360

9 410101
930360

(

3+
1

)5
88 71561664 2981736 24

2981736
17 4051667

11926944
17 4051667

11926944
11 2709893

3975648

3+

1
#3−

1
40 143904 6058 24

5934
12

124
0 1085

5996
5 1749

11992

41#31 46 359712 14988 24
14988

3 4259
9992

3 4259
9992

5 22693
29976

5+

1
#3+

1
50 200976 8374 24

8374
9 10169

16748
9 10169

16748
6 10715

16748

5+

1
#3−

1
50 568752 23698 24

23698
2 9174

11849
2 9174

11849
6 12351

23698

5+

2
#3+

1
52 7357008 306542 24

306542
7 305199

306542
7 305199

306542
6 246067

306542

5+

2
#3−

1
50 5280 220 24

220
1 7

88
1 7

88
6 87

440

(3+

1
)2#3−

1
56 8893152 370548 24

370548
3 57571

123516
3 57571

123516
6 167021

185274

41 30 3648 152 24
152

0 33
152

4 1
152

(41)
2 52 334824 14144 24

13758
12

386
0 3450

13951
6 13089

27902

(41)
3 74 31415592 1308983 24

1308983
0 3384343

1308983
8 2294775

2617966

Table 11. Data on knots in the SC Lattice.

In addition, we can make estimates analogous to γK by considering the writhe or
curvature instead: Define

ζK = lim sup
N→∞

|W|KN

N
and βK = lim sup

N→∞

KKN

N
, (34)

then one may attempt to estimate these numbers for the trefoil and figure eight
knots. ζK can be interpreted as the average absolute writhe per knot component,
and similarly, βK is the average curvature at minimal length per knot component.

The data for the trefoil give the sequence {3.441, 3.459, 3.464, 3.465, 3.468}. These
results show that ζ31

≈ 3.47. The similar analysis for 41 gives {0.217, 0.124, 0.099} and
it appears that there is a more pronounced dependence on the number of components
in this case. It is difficult to estimate ζ41

from these results, and we have not ruled
out the possibility that it may approach zero as the number of components increases
without bound.

Repeating the above for β31
gives the estimates {3.481, 2.718, 2.428, 2.360, 2.336}

so that one may estimate β31
≈ 2.3 in units of 2π. Observe that the bounds on ν31

following equation (25) suggest that βK ≥ 1 for any knot type K 6= 01. The estimates
for 41 are {4.007, 3.336, 2.960}, so that one cannot yet determine an estimate for β41

.
Overall we have examined the entropic and average geometric properties of

minimal length lattice knots in the SC, the FCC and the BCC lattices. Our data
were collected using Monte Carlo algorithms with BFACF-style elementary moves.
The statistical and average properties of sets of minimal length knotted polygons
were determined and discussed, and comparisons were made between the results in
the three lattices. Our results show in particular that the properties of minimal length
lattice knots are not universal in the three lattices. The spectrum of minimal length
knot types, the entropy, and the average lattice curvature and lattice writhe shows
variation in several aspects. For example, the spectra of minimal length knots in tables
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Rank SC Lattice FCC Lattice BCC Lattice

1 3
+

1 01 01

2 5
+

2 8
+

20 3
+

1

3 01 63 5
+

1

4 41 41 8
+

20

5 7
+
2 8

+
1 5

+
2

6 6
+

2 8
+

11 8
+

2

7 5
+

1 6
+

1 8
+

4

8 8
+

21 8
+

13 6
+

2

9 7
+

1 8
+

2 7
+

3

10 8
+
2 8

+
21 63

11 7
+

6 7
+

5 8
+

7

12 8
+

19 818 8
+

8

13 89 8
+

4 7
+

4

14 63 83 7
+

5

15 8
+

15 6
+

2 8
+

13

16 8
+
4 8

+
15 8

+
14

17 6
+

1 812 8
+

12

18 8
+

17 8
+

14 8
+

6

19 8
+

13 7
+

1 818

20 8
+

1 5
+

2 8
+

10

21 7
+
5 8

+
16 8

+
9

22 8
+

6 7
+

2 8
+

5

23 7
+

4 7
+

6 7
+

1

24 818 8
+

9 8
+

15

25 8
+

8 8
+

6 8
+

19

26 812 3
+
1 8

+
17

27 8
+

10 8
+

17 8
+

21

28 8
+

5 8
+

5 8
+

16

29 7
+

7 8
+

8 8
+

1

30 7
+

3 7
+

3 83

31 8
+

14 7
+

7 6
+

1

32 8
+
20 8

+
10 41

33 8
+

11 8
+

7 7
+

6

34 8
+

16 8
+

19 7
+

2 , 7
+

7

35 8
+

7 5
+

1 812

36 83 7
+

4

Table 12. Ranking of minimal length lattice knots of knot types to 8 crossings
by entropy per unit length in the SC, FCC and FCC lattices.

1, 5 and 8 do not maintain a strict order, but shuffle some knots types up or down
the table in the different lattices.

Similar observations can be made with respect to the entropy of minimal length
knots. For example the entropy of the knot types 51 and 52 are inverted in the BCC
lattice, compared to the relation they have in the SC and FCC lattices. In table 12 we
rank knot types by the entropy per unit length at minimal length. That is, we rank
the knot types by computing EK (see equation (31)) – the larger the result, the lower
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the ranking in the table (that is, the higher the knot type is listed in the table). The
rankings in table 12 are shuffled around in each of the three lattices. For example, the
trefoil knot is ranked at position 1 in the SC lattice, at position 26 in the FCC lattice,
and at position 2 in the BCC lattice. Other knot types are similarly shuffled.

In the case of writhe there are also subtle, but interesting differences between the
three lattices. For example, the average absolute writhe of the knot type 83 is zero
in the SC and BCC lattices, yet it is not zero in the FCC lattice. Equally interesting
about the results in the FCC lattice is the fact that the average absolute writhes of
the knot types 41 and 816 are very nearly very simple fractions (far simpler than the
number of symmetry classes in each case would suggest), in addition to the fact that
the average absolute writhe of the knot 41 is identically zero in the BCC lattice (but
not in the SC and FCC lattices).

Finally, an analysis of the number of knot types of minimal length nK ≤ n,
denoted Qn, suggest that Qn ∼ Qn. Our data suggest that QSC < QBCC < QFCC ,
so that that the number of knot types which can be tied in a polygon of n edges
increases fastest (at an exponential rate) in the FCC lattice, followed by the BCC
lattice and then the SC lattice.
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