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Abstract

The percolation probability for directed, compact percolation near a damp wall, which
interpolates between the previously examined cases, is derived exactly. We find that the
critical exponent β = 2 in common with the dry wall, rather than the value previously
found in the wet wall and bulk cases. The solution is found via a mapping to a particular
model of directed walks. We evaluate the exact generating function for this walk model
which is also related to the ASEP model of traffic flow. We compare the underlying math-
ematical structure of the various cases previously considered and this one by reviewing
the common framework of solution via the mapping to different directed walk models.

1 Introduction

Percolation is a key problem in statistical mechanics, and there are many practical applications
for percolation theory — including the modelling of the spread of epidemics [7] and forest
fires [19], of metal-insulator transition [1] and of the flow of sand [17]. Percolation displays a
fundamental critical phenomenon and deep recent progress [9] has been made to mathematically
expound its behaviour in two dimensions. The basic model has been modified in many ways
both to model different systems and in the search for integrable systems. The introduction of
directedness, which in self-avoiding walks for instance leads to a solvable model, does not in the
case of percolation [12]. However, by adding the further condition of ‘compactness’ a solvable
lattice model ensues [8]. Domany and Kinzel [8] introduced directed, compact percolation and
found exact expressions for the percolation probability, the cluster length distribution and the
associated critical exponents in the bulk far from any confining walls. Essam [10] extended this
work to biased growth and to mean cluster size and length, finding exact recurrence relations for
length and size distributions, the closed form for the relation for the moment generating function
of the length distribution, and the first three moments for the size distribution. Following on
from this, non-nodal clusters and the cluster size distribution were investigated by Essam and
TanlaKishani [13].

The effect of adjacent interacting walls is a key topic in critical phenomena and the effect
of the presence of a wall in directed, compact percolation was first considered by Essam and
TanlaKishani [14]. They considered a so-called wet wall where the sites of the wall are all
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deemed to be occupied. They found expressions for the percolation probability, the mean
length of finite clusters and the mean cluster size, and so discovered that the critical behaviour
of the percolation probability in the wet case is the same as in the bulk case [8]. The opposite
case of a dry wall, where the sites along the wall are fixed to be unoccupied, was considered by
several authors. Here the critical behaviour departs from the bulk model.

An exact form for the percolation probability in the dry wall case was conjectured by
Bidaux and Privman [2] and derived by Lin [18], who found that the critical exponent for the
percolation probability, β, changed from the bulk value β = 1 to β = 2 in the dry case. Essam
and TanlaKishani [14] generalised this result to include the possibility of a bias towards the
wall or a bias away from the wall. Essam and Guttmann [11] found an exact expression for the
mean cluster size below the critical point and used differential approximants to conjecture that
the average cluster size above pc and the mean cluster length satisfy second order differential
equations. Brak and Essam [5] used a mapping to a directed walk problem to derive the
percolation probability and used the Zeilberger algorithm [20, 21] to find the mean length and
number of contacts (occupied sites adjacent to the wall) in the dry case — these results involved
elliptic integrals.

Given that the critical behaviour varies from wet to dry, and also that the dry case demon-
strates quite different mathematical behaviour, it is of interest to examine a model which
interpolates between dry and wet: this was mentioned, though not defined, in [5] as the damp
wall model. In our damp wall model there are two independent probabilities associated with
bulk and wall occupation respectively.

In this paper we consider directed, compact percolation near a damp wall and calculate the
percolation probability exactly. We find the percolation probability, P (p, pw), to be:

P (p, pw) =
(2p− 1)2

p2(p− pw + ppw)
p ≥ pc

where pw is the probability of a site on the wall being wet, and p is the probability of any other
site being wet. In doing so we elucidate the crossover from the wet wall to the dry wall critical
behaviour. We note that when pw = 1, we obtain the wet wall percolation probability:

Pwet = P (p, 1) =
(2p− 1)

p2
p ≥ pc

which was calculated previously in [14]. When pw = 0, we obtain the dry wall percolation
probability:

P dry = P (p, 0) =
(2p− 1)2

p3
p ≥ pc

which was calculated previously in [18].
Also, as a byproduct of finding the percolation probability for the damp wall case, we obtain

the partition function of vesicles having two interaction parameters with a wall — see (4.69).
However, first we review how each of the cases so far considered can be mapped onto various

problems of directed walks, and introduce a new mapping for the damp model. This allows
comparison of the solution methods in a common framework and gives rise to an explanation
of the origin of the different mathematical complexities of the various cases: different cases
require a different number of walks and different numbers of walk parameters. We find an
explicit expression for the generating function of the walk problem associated with the damp
case. We note that this walk model is also related to the ASEP model: a stochastic traffic
flow model. Finally, we introduce a functional equation approach to the solution which should
prove useful in future work on these problems.
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2 Directed Compact percolation in the bulk

2.1 The model

Directed compact percolation can be defined through a growth process. We shall restrict
ourselves to the square lattice in this work. Starting with an integer grid in coordinates t
(horizontal) and x (vertical) we utilise a (directed) square lattice turned through π/4 where
points (t, x) are sites of the grid such that t ∈ N ∪ {0}, x ∈ Z and t + x is even: see Figure 1.
Moreover, the (directed) bonds of the lattice occur between sites (t, x) and (t + 1, x + 1), and
between sites (t, x) and (t+ 1, x− 1).
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Figure 1: A directed, compact percolation cluster on the rotated square lattice. This cluster
has probability p7q9.

The sites of the lattice are deemed to be ‘occupied’/‘wet’ or ‘not occupied’/‘dry’ by the
following process. A set of m contiguous sites in the column t = 0 are fixed to be wet. In
particular we can choose (0, 2), (0, 4), . . ., (0, 2m) to be wet. We shall concentrate on the case
m = 1 in this work. From this seed a cluster of wet sites is grown in the following way. As
we see in Figure 1, the cluster produced by the process described below remains contiguous,
though of variable size. We label the coordinates of the wet sites in column t as (t, xj) where
j = 1, . . . , w(t) and xj = b(t) + 2(j− 1). Here, b(t) is therefore the x-coordinate of the bottom-
most wet site in column t. We have b(0) = 2 and w(0) = m

The process proceeds a column at a time. Let the currently rightmost occupied column
have horizontal coordinate T . Although the order is flexible, for the sake of definiteness, start
with considering the site (T + 1, b(T ) − 1). It will be occupied or not with a probability p.
There is no need to consider sites with smaller x-coordinate as these will remain dry in the
process. Move up the column site-by-site using the general rule that a site (T + 1, x) becomes
wet with certainty if both sites (T, x ± 1) are wet, and with probability p if only one of these
sites is wet, and so stays dry with probability q = 1 − p. If both sites (T, x ± 1) are dry then
the site (T + 1, x) remains dry. These rules ensure the contiguity of the cluster in any column,
hence the descriptor compact in the title of the model. The process either stops after a finite
number of columns, say ` (being the length of the cluster), or continues indefinitely.

Note that as the process moves from column T to T+1 the probability of the cluster obtains
a factor of p2 if the width of the cluster increases by 1, pq if the width stays unchanged and q2

if the width decreases by 1. Also note that the size of a cluster s =
∑

tw(t), being the number
of wet sites, is not simply related to the length of a cluster `.

Now consider the configurations produced by this growth process and the associated prob-
abilities. We label the set of all configurations of finite length ` by Ωbulk

` . The probability of a
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particular configuration ϕ` ∈ Ωbulk
` is

π(ϕ`) = p2i(pq)cq2d (2.1)

where i, c and d are the number of times the width of the cluster increases, stays constant
and decreases in width, respectively. Now we know that i + c + d = ` and since a cluster that
terminates in a finite length (w(`) = 0) must decrease its width m more times that it increases
it, this gives d = i+m. Hence we have

πbulk(ϕ`) = (pq)`−mq2m (2.2)

We define the probability that the cluster is finite as

Qbulk(p) =
∞∑
`=1

∑
ϕ`∈Ωbulk

`

π(ϕ`) (2.3)

and so substituting our expression for the configuration probability (2.2) gives

Qbulk(p) =

(
q

p

)m ∞∑
`=1

(pq)`
∑

ϕ`∈Ωbulk
`

1 =

(
q

p

)m ∞∑
`=1

b`(pq)
` (2.4)

where b` = |Ω`|.
There are several quantities of interest. The key quantity, on which we focus in this paper,

is the probability P (p) that an infinite cluster is grown from the seed, given by

P bulk(p) = 1−Qbulk(p) , (2.5)

which is known as the percolation probability. Also of interest is the average length of finite
clusters 〈`〉 (p) given by

〈`〉bulk (p) =

∑∞
`=1 `b`(pq)

`∑∞
`=1 b`(pq)

`
. (2.6)

The other quantity usually considered is the average size of finite clusters 〈s〉bulk (p), which
needs to be defined from first principles as

〈s〉bulk (p) =

∑∞
`=1

∑
ϕ`∈Ω`

s(ϕ`)π(ϕ`)∑∞
`=1

∑
ϕ`∈Ω`

π(ϕ`)
. (2.7)

Directed, compact percolation has been shown [8] to undergo a phase transition in a similar
way to that of ordinary percolation. The order parameter is the percolation probability and
there exists a critical point at some value of the occupation probability p = pc. For p < pc only
finite clusters are produced by the process described above and P (p) = 0. However, for p > pc
an infinite cluster is found to exist and P (p) > 0. A critical exponent β is defined by the way
P (p) approaches zero as p approached pc from above:

P (p) ∼ B(p− pc)β (2.8)

as p→ p+
c . The exponent τ1 is defined by the behaviour of the average length 〈`〉 (p) near pc:

〈`〉 (p) ∼ C±|p− pc|−τ1 as p→ pc . (2.9)

Other exponents and a scaling theory linking the exponents have been developed [8], [10].
We shall now confine ourselves to the case of m = 1, where the seed is is a single occupied

site.
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2.2 Mapping to directed walks

The configurations of the directed compact percolation clusters can be placed in bijection with
a problem of directed walks. This is true in both the bulk and the various wall cases discussed
later. In the bulk case for m = 1 the directed walk problem involves two fully directed walks on
the square lattice that start and end at the same lattice site: that is, the problem of staircase
polygons [3]. In particular the problem of finding P (p) becomes equivalent to finding the
perimeter generating function for staircase polygons [6]. To see this, consider the boundary
of a cluster on the dual lattice (where t + x is odd): see Figure 2. Moving from left to right
the boundary begins at (−1, 2) and finishes when t = `. Between each column of the cluster
there are two steps of the boundary (of which there are `− 1 such pairs) and additional pairs
of boundary steps at each end of the cluster. There are `+ 1 pairs of steps in total. Given that
the steps in the boundary are only those with unit vectors (1, 1) or (1,−1) the boundary is
clearly made of two fully directed walks on the square lattice which start and end at the same
sites but otherwise avoid each other: these are staircase polygons. It is also simple to see that
all staircase polygons of non-zero perimeter are boundaries for percolation clusters and that
the mapping is one-to-one. The probability of a cluster is given by equation (2.2), with m = 1,
that is (pq)`−1q2 and the boundary walk of the same configuration is given weight z`+1. Now
consider the perimeter generating function for staircase polygons

Gsc(z) =
∞∑
t=2

atz
t =

1− 2z −
√

1− 4z

2
(2.10)

where z is associated with the half perimeter t, and at is the number of staircase polygons with
half perimeter t. The bijection described above has established that b` = a`+1 and so

Gsc(z) = z
∞∑
`=1

b`z
` (2.11)

Hence by making the mapping z = pq we have

Qbulk(p) = p−2Gsc(pq) . (2.12)

x
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1

t
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Figure 2: Mapping the cluster to a pair of directed walks, of weight z9.

The average length of finite clusters 〈`〉 (p) can also be found from the perimeter staircase
polygon generating function via equation (2.6). If we define Msc(z) as

Msc(z) = z
d

dz

(
log

[
Gsc(z)

z

])
(2.13)
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then the mean length of finite clusters is

〈`〉bulk (p) = Msc(pq). (2.14)

The average size 〈s〉 (p), and indeed all the moments of the size distribution, can be found
by consideration of the area-perimeter generating function [6].

2.3 Solution

The mapping above immediately gives us the Percolation Probability as

P bulk(p) =

{
0 p < 1

2
2p−1
p2

p ≥ 1
2

(2.15)

This implies there is a critical point at p = pc = 1
2
, such that below pc only finite clusters

are formed, whereas above pc there exists an infinite cluster and correspondingly P (p) > 0.
Moreover the critical exponent βbulk = 1 in the bulk.

The average length of finite clusters 〈`〉 (p) can also be found from the perimeter staircase
polygon generating function (equation (2.14)) as

〈`〉bulk (p) =
1

|2p− 1|
(2.16)

Therefore the critical exponent τ bulk1 = 1 in the bulk.

3 Directed Compact Percolation near a Wall

3.1 Definition for a general ‘Damp’ Wall

Let us consider the growth process again starting from a seed of size m = 1, and modify it in
two ways. Firstly, to introduce a wall, nominally at x = 1, we restrict occupation of sites to
x ≥ 1. Secondly, we introduce a separate probability of occupation, pw, for sites on the wall in
the following way. We note prior to this that sites on the wall only occur for odd values of the
horizontal coordinate t. Consider that the growth process is currently in column T = 2r. If
the site (2r, 2) is wet then the site (2r+ 1, 1) is wet with probability pw, and hence is dry with
probability qw = 1− pw. If the site (2r, 2) is dry then the (2r + 1, 1) is dry with certainty. For
all other sites with x > 1 in column 2r + 1, and indeed for any site with x > 1 in a column
with even horizontal coordinate, the same growth rules as in the bulk case hold. All sites with
x < 1 are fixed to be dry.

To consider the probability of any finite cluster one needs to know its length `, the number
of sites, v1, with x = 1 that are occupied and the number of sites, v2, with x = 2 that are
occupied. Relative to the bulk probability of (pq)`−1q2, each occupied site at x = 2 where
there is no wet site in the subsequent column at x = 1 (of which there are v2 − v1) adjusts
the probability by a factor qw

q
. Each wet site on the wall (of which there are v1) adjusts the

probability in two ways: the non-occupation of x = 0 supplies a factor of q−1 while the different
probability of occupying the site at x = 1 gives a factor of pw

p
. Therefore the probability of

such a configuration, ϕ`,v1,v2 ∈ Ω`,v1,v2 , is

π(ϕ`,v1,v2) = (pq)`−1q2

(
pw
p

)v1 (qw
q

)v2−v1 (1

q

)v1
(3.1)
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Figure 3: A cluster of a damp wall model. This cluster has probability p5q5p2
wq

2
w.

The probability that the growth process produces a finite cluster is

Q(p, pw) =
∞∑
`=1

∑
v1,v2

∑
ϕ∈Ω`,v1,v2

π(ϕ`,v1,v2) (3.2)

which can be written as

Q(p, pw) =

(
q

p

) ∞∑
`=1

∑
v1,v2

c`,v1,v2

(
pw
pqw

)v1 (qw
q

)v2
(pq)` (3.3)

where c`,v1,v2 = |Ω`,v1,v2|.
The percolation probability is given by P (p, pw) = 1−Q(p, pw), and the mean cluster length

and other averages in an analogous way to the bulk expressions.

3.1.1 Mapping to directed walks

In the same way as in the bulk the clusters of the growth process can be put into bijection with
configurations of staircase polygons. However, to accommodate the damp wall, the restriction
that the wet sites must have x ≥ 1 implies that the sites visited by the polygon must obey
x ≥ 0. Also, the weights of the polygon must be modified to allow for the different occupation
probability on the wall. Let us define a particular problem of staircase polygons above a wall
at x = 0 where one end is fixed at (−1, 2) as in the bulk case, and the other end free with
the rest. Now in addition to attaching the fugacity z to each pair of steps in the polygon we
attached extra fugacities to steps that move from x = 1 to x = 2 and those that move from
x = 1 to x = 0. Let the number of staircase polygons of half-perimeter t′, with u1 steps that
move from x = 1 to x = 0 and u2 steps that move from x = 1 to x = 2 be dt′,u1,u2 . The
generating function for this polygon problem, which we shall call damp staircase polygons, or
damp vesicles for short, is

Gdv(z;κ1, κ2) =
∑
t′=2

∑
u1,u2

dt′,u1,u2κ
u1
1 κ

u2
2 zt

′
(3.4)

Each step from x = 1 to x = 0 can be mapped one-to-one with wet sites at x = 1. Hence
u1 = v1. Each step from x = 1 to x = 2 can be mapped one-to-one with certain pairs of sites
at x = 1 and x = 2: precisely, a wet site at x = 2 in one column and a dry site at x = 1 in the
next column. So u2 = v2 − v1. Therefore we have c`,v1,v2 = d`+1,v1,v2−v1+1. Hence we have

Gdv(z;κ1, κ2) = z
∑
`=1

∑
v1,v2

c`,v1,v2

(
κ1

κ2

)v1
κv22 z` (3.5)
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Correspondence to the percolation problem is made by the associations κ1

κ2
= pw

pqw
, κ2 = qw

q
and

z = pq. Therefore making the substitutions

z = pq (3.6)

κ1 =
pw
pq

(3.7)

κ2 =
qw
q

(3.8)

into the damp vesicle generating function Gdv(z;κ1, κ2) gives us the correspondence

Q(p, pw) =

(
1

p2

)
Gdv

(
pq;

pw
pq
,
qw
q

)
(3.9)

We now review the limiting cases already analysed in the literature, namely, the wet wall
and the dry wall. Before we do this let us rewrite the probability of a cluster in the following
way:

π(ϕ`,v1,v2) = p`−v1−1q`−v2+1pv1w q
v2−v1
w (3.10)

We note that 1 ≤ v2, 0 ≤ v1 ≤ v2 and v1 + v2 ≤ `.

3.2 Wet wall

If we set pw = 1 and so qw = 0 then all sites on the wall are occupied, or wet, and this is known
as the wet wall model. The effect of taking this limit is that the clusters remain attached to
the wall. Any cluster must have as many sites wet at x = 1 as at x = 2. We therefore have
v2 = v1 and v1 + v2 = `. This implies that ` must be even so let ` = 2r and hence v1 = v2 = r.
The probability of a cluster then becomes

πwet(ϕ`) = (pq)r−1q2 (3.11)

and the probability that a cluster is finite can be written as

Qwet(p) =

(
q

p

) ∞∑
r=1

ĉr(pq)
r (3.12)

where ĉr = |Ω̂wet
r | and Ω̂wet

r is the set of clusters of length r. We note that this is a singular
limit as the probability measure is zero whenever v1 6= v2.

The consequence of taking this limit qw → 0 is that the mapping to a directed walk problem
is modified. This occurs because if one attempts to use the staircase polygons as the mapped
configuration one notices that only polygons where the bottom walk is fixed in a zig-zag con-
figuration have non-zero weight. Therefore one can use a mapping to a single walk, being the
top boundary walk on the dual lattice: see Figure 4.

We consider a walk beginning at (0, 3), and tracing the upper boundary of the cluster of
length 2r in the positive t direction (see Figure 4). We note that the final two steps must be in
the (1,−1) direction. In free directed walks above a surface and finishing on the surface only
the final step is fixed in such a way. Therefore we consider only the part of the boundary walk
that finishes in 2r − 1 steps at height x = 2. We note that because of the wet condition this
part of the boundary walk always obeys x ≥ 2. This is then a (reversed) Ballot path [4] of
length 2r − 1 and end height of one. The generating function of such Ballot walks is

GB(y) =
∑
r=1

d̂ry
r (3.13)
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Figure 4: A cluster of a wet wall model with a boundary shown. This cluster has probability
p3q5.

where the variable y is associated with the half-length r of the walk, and d̂r = B2r−1,1, where
Bn,h are Ballot numbers as defined in [4] (there is more than one notation in the literature). It

is clear that ĉr = d̂r for r ≥ 1 and hence

Qwet(p) =

(
q

p

)
GB(pq) (3.14)

Now

Bn,h =
2(h+ 1)

(n+ h+ 2)

(
n
n−h

2

)
(3.15)

so

d̂r = B2r−1,1 =
2

r + 1

(
2r − 1

r − 1

)
=

1

r + 1

(
2r

r

)
= Cr (3.16)

where Cr are the Catalan numbers. Hence

GB(y) =
∞∑
r=1

Cry
r (3.17)

Hence:

GB(y) =
1− 2y −

√
1− 4y

2y
(3.18)

This, in turn implies that

Qwet(p) =
1− 2p(1− p)− |2p− 1|

2p2
(3.19)

=

{
1, p ≤ 1

2
q2

p2
, p > 1

2

(3.20)

That is, there is a critical point at p = 1/2 as in the bulk model and that the order parameter
exponent β is also the same as in the bulk, namely βwet = 1.

The average cluster length can also be calculated from knowledge of GB(y) as

〈`〉wet (p) = MD(pq) =
1

|2p− 1|
(3.21)
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where

MD(y) = 2y
d

dy
(logGB(y)) =

1√
1− 4y

(3.22)

We note that the mean length of finite clusters for a wet wall is identical to that of the bulk
case and so the exponent τwet1 = 1 in the wet model.

3.3 Dry wall

If we set pw = 0, and so qw = 1, then all sites on the wall are unoccupied (and unable to become
occupied), or dry, and we have the dry wall model. We now have v1 = 0 and the probability of
a cluster of length ` with v2 wet sites at x = 2 is

πdry(ϕ`,v2) = p`−1q`−v2+1 =
q

p
(pq)`

(
1

q

)v2
(3.23)

and the probability that a cluster is finite can be written as

Qdry(p) =

(
q

p

) ∞∑
`=1

∑
v2

č`,v2

(
1

q

)v2
(pq)` (3.24)

where č`,v2 = |Ωdry
`,v2
| and Ωdry

`,v2
is the set of all clusters of length ` with v2 wet sites at x = 2.

Since dry wall is the limit pw → 0 one can use the mapping described above for the damp
wall model onto the staircase polygons with the two wall weights κ1 and κ2 where κ1 → 0.
This means that there are no steps of the lower boundary of the polygon between x = 1 and
x = 0 and so consequently no sites of that walk at x = 0. Essentially the cluster configurations
now map one-to-one with staircase polygons starting at (−1, 2) and not going below x = 1 (as
opposed to x = 0 as in the full damp case). Consider the generating function, Grv, for such
a staircase vesicle (polygons) made up of two directed walks starting at (−1, 2) that mutually
avoid except at this first site and also the final site, picking up the weight zt

`+1
κv22 with ` and

v2 defined as previously. We have

Grv(z;κ2) = Gdv(z; 0, κ2) (3.25)

and

Qdry(p) = p−2Grv

(
pq,

1

q

)
(3.26)

An expression for the generating function was found in [5]:

Grv(z;κ) =
z2κ(κ− 2)

(κ− 1)2

[
1 +

(
1 +

ω

z

)(ω − 2z2 −
√
ω(ω − 4z2)

2z2

)]
θ(κ− 2) (3.27)

+
z2

κ− 1

∞∑
r=0

z2r(Cr + zCr+1)
∞∑

s=r+1

Csω
s−r, (3.28)

where ω = κ−1
κ2 . This gives an expression for dry case percolation probability, P dry(p) =

1−Qdry(p), as

P dry(p) =

{
0, p ≤ 1

2
(2p−1)2

p3
p > 1

2

(3.29)

which immediately gives us that βdry = 2.

10



In [11], differential approximants were used to find a differential equation satisfied by the
unnormalised mean length L̄(p):

p2(1− p)(1− 2p)(1 + 4p− 4p2)
d2L̄

dp2
+ p(7− 8p− 46p2 + 72p3 − 24p4)

dL̄

dp

+ (9− 28p− 2p2 + 24p3 − 8p4)L̄ = 9− 12p+ 12p2 (3.30)

This was solved numerically in [11] with the result

L̄(p) ∼= B± log |2p− 1|+ C± (3.31)

as p → 1/2, where B− = B+ = −2.547, C− = 4.097 and C+ = −3.901. This implies that,
effectively, τ dry1 = 0. It was conjectured that B− = B+ = − 8

π
, and C− − C+ = 8. These

conjectures were confirmed by the exact results of [5] with C− = log 8−8
π

+ 4 = 4.101148 . . .
which differs from the numerical calculation by one part in a thousand.

In [5], Zeilberger’s algorithm is used to obtain an exact expression for the unnormalised
mean length:

L̄(p) =
1

8p3

(
−5 + 4z + 6

√
1− 4z − 8E(16z2)

π
+

2(3− 4z)(1 + 4z)K(16z2)

π

)
+ θ(p− pc)

(1− p)(3− 2p)

p3
(3.32)

where z = p(1− p).
Also in [5], the asymptotic form for S̄(p), the unnormalised mean size of clusters, is found:

S̄(p) ∼=
1

2p− 1

{
A− +B−(2p− 1)4 log |2p− 1|

}
(3.33)

where A− = 32
3π
− 1

2
and B− = 8

π
, confirming the estimate for A− in [11] to be very accurate,

only differing from the exact value by 1 in the sixth decimal place.

4 Solution for the general Damp Case

Let us recall that to find the percolation probability P (p, pw) one can instead calculate the
generating function, described above, for damp vesicles Gdv(z;κ1, κ2), and then use the corre-
spondence (3.9). Essentially then the generating variable z becomes dependent on the param-
eters κ1 and κ2. We refer to these values as the percolation values. We shall first consider the
calculation of the generating function Gdv(z;κ1, κ2) for independent values of the generating
variable z.

4.1 Generating function of the Damp Vesicle Problem

We will find the generating function Gdv(z;κ1, κ2) by considering associated partition functions.
Let us denote the finite perimeter partition functions for staircase vesicles (polygons) with one
end free as Źνt′ (κ1, κ2), so that

Źνt′ (κ1, κ2) =
∑
u1,u2

dt′,u1,u2κ
u1
1 κ

u2
2 (4.1)

Here the half-perimeter is t′. Therefore

Gdv(z;κ1, κ2) =
∑
t′≥2

Źνt′ (κ1, κ2)zt
′

(4.2)
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Let us define the partition function, ZTt (x|1;κ1, κ2), for weighted pairs of mutually avoiding
directed walks of length t, weighted with κ1 for each step from x = 1 to x = 0, and with κ2 for
each step from x = 1 to x = 2, beginning at (0, 1) and (0, 3) and ending at particular points
(t, x) and (t, x + 2) respectively. However, let us include an extra factor of κ2 if x = 1: this
takes care of the weight of a final step of the vesicle if it is between x = 1 and x = 2. Hence

Źνt+2(κ1, κ2) =
t+1∑
x=0

ZTt (x|1;κ1, κ2) (4.3)

The mathematical reason for this peculiar definition will become clear below. In any case we
now have

Gdv(z;κ1, κ2) = z2
∑
t≥0

zt
t+1∑
x=0

ZTt (x|1;κ1, κ2) (4.4)

If we define the generating function G(z;κ1, κ2) simply as

G(z;κ1, κ2) = z−2Gdv(z;κ1, κ2) =
∑
t≥0

zt
t+1∑
x=0

ZTt (x|1;κ1, κ2) (4.5)

where we note that the first few terms of the generating function are:

G(z;κ1, κ2) = κ2 + (κ1 + κ2)z + (κ2 + 2κ1κ2 + κ2
2)z2 + (2κ2

1 + 2κ2 + 4κ1κ2 + 2κ2
2)z3 + . . . (4.6)

then

P (p, pw) = 1− q2G

(
pq;

pw
pq
,
qw
q

)
(4.7)

To begin we call upon the Gessel-Viennot determinant [15, 16] to express this fixed-end
vesicle partition function in terms of single walk partition functions as

ZTt (x|1;κ1, κ2) =

∣∣∣∣Zs
t (x|1;κ1, κ2) Zs

t (x+ 2|1;κ1, κ2)
Zs
t (x|3;κ1, κ2) Zs

t (x+ 2|3;κ1, κ2)

∣∣∣∣ (4.8)

where where Zs
t (xf |xi;κ1, κ2) is the partition function for single walks beginning at x = xi ≥ 0

and terminating at x = xf ≥ 0, after t steps, weighted with κ1 for each step from x = 1 to
x = 0, and with κ2 for each step from x = 1 to x = 2 and with the extra weight κ2 if xf = 1
attached to the final site of the walk. We shall refer to these unusually weighted walks as damp
walks. What is important to notice is that one could equivalently weight each step from x = 0
to x = 1 with the weight κ1 and each step from x = 2 to x = 1 with weight κ2 and add the
additional weight κ2 if xi = 1 to obtain the same partition function. This implies the symmetry

Zs
t (xf |xi;κ1, κ2) = Zs

t (xi|xf ;κ1, κ2) (4.9)

and it is this symmetry that plays an important role in using the constant term method to
solve for Zs

t . Of course, from equations (4.5) and (4.8) it is precisely the single walk partition
function that we are required to find.

It is therefore apropos to consider the mathematics of the solution for the single walk
partition function Zs

t (xf |xi;κ1, κ2). Importantly as well as being able to write down an explicit
solution for Zs

t one can also find a recurrence relation in t for it that allows one to derive a
recurrence relation for ZTt . The recurrence can be solved using generating functions which is
precisely the required result.
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4.1.1 Single damp walk partition function

Because of the symmetry noted above let us consider Zs
t (xf |xi;κ1, κ2) to be that partition

function for a single directed walk of length t beginning at (0, xi) and ending at (t, xf ), weighted
with κ1 for each step from x = 0 to x = 1, and with κ2 for each step from x = 2 to x = 1, with
an extra weight κ2 if xi = 1, and constrained such that x ≥ 0.

First we consider the constraints due to the shape of the lattice — as the walk can only
pass through points such that x+ t is odd. So for t = 1, regardless of xi (where xi is assumed
to take odd values due to the lattice we are using), we cannot have xf = 1, due to the location
of sites on the lattice. Hence:

Zs
1 (1|xi;κ1, κ2) = 0 (4.10)

We consider a walk of trivial length. For t = 0, the only physical possibility is if xf = xi.
This is weighted by 1 for xi > 1, and by κ2 if xi = 1. So we have:

Zs
0 (x|xi;κ1, κ2) = δx,xi

, for x > 1 (4.11)

Zs
0 (1|xi;κ1, κ2) = κ2δ1,xi

(4.12)

We can combine (4.11) and (4.12) to get:

Zs
0 (x|xi;κ1, κ2) = δx,xi

(1 + (κ2 − 1) δxi,1) (4.13)

Due to the location of the wall, we know that if a walk is at x = 0 after t steps, then after
(t− 1) steps it was at x = 1, with an adjustment of the weightings, so we have:

Zs
t (0|xi;κ1, κ2) =

κ1

κ2

Zs
t−1(1|xi;κ1, κ2), t > 0 (4.14)

Considering walks that are at x = 1 after t steps we have

Zs
t (1|xi;κ1, κ2) = κ2Z

s
t−1(0|xi;κ1, κ2) + κ2Z

s
t−1(2|xi;κ1, κ2) (4.15)

Away from the wall, we have the general recurrence, for t > 0, x ≥ 2

Zs
t (x|xi;κ1, κ2) = Zs

t−1(x− 1|xi;κ1, κ2) + Zs
t−1(x+ 1|xi;κ1, κ2) (4.16)

We list a few values of the single walk partition function:

Zs
0 (1|1;κ1, κ2) = κ2 (4.17)

Zs
2 (1|1;κ1, κ2) = κ1κ2 + κ2

2 (4.18)

Zs
4 (1|1;κ1, κ2) = κ2

1κ2 + κ2
2 + κ3

2 + 2κ1κ
2
2 (4.19)

Zs
0 (3|1;κ1, κ2) = 0 (4.20)

Zs
2 (3|1;κ1, κ2) = κ2 (4.21)

Zs
4 (3|1;κ1, κ2) = 2κ2 + κ1κ2 + κ2

2 (4.22)

After applying a standard separation of variables Ansatz Λtyx we find that equation (4.16)
is satisfied by

f(x, xi, y) = A(xi, y)(y + ȳ)t(yx − S(y)ȳx) (4.23)

where ȳ = y−1. For f(x, xi, y) to also satisfy (4.14) and (4.15), we have:

Λ2(y − S(y)ȳ) = κ1(y − S(y)ȳ) + κ2Λ(y2 − S(y)ȳ2) (4.24)
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where Λ = y + ȳ. Hence

S(y) =
(Λ2 − κ1)y − κ2Λy2

(Λ2 − κ1)ȳ − κ2Λȳ2
. (4.25)

The choice for A(xi, y) is made to ensure that the interchange xi ↔ xf symmetry noted in
equation (4.9) is obeyed

A(xi, y) =
1

2
(ȳxi − S(ȳ)yxi) . (4.26)

This gives, on noting that S(ȳ) = S(y)−1,

f(x, xi, y) =
1

2
Λt(yx−xi + yxi−x − S(y)ȳx+xi − S(ȳ)yx+xi) (4.27)

It will prove useful to write the partition function as a constant term expression: The operator
CTy[] is defined to act on Laurent series in y with finitely many negative powers, giving the
coefficient of the constant term. Expanding in powers of y we have

y2S(ȳ) = 1− κ2 + κ2(2− κ1 − κ2)y2 +O(y4) (4.28)

and similarly expanding ȳ2S(y) in powers of ȳ, we see that CTy[f(x, xi, y)] satisfies the boundary
and initial conditions. As interchanging y and ȳ in any term under the CT operation has no
effect, we can hence write:

Zs
t (x|xi;κ1, κ2) = CTy[Λ

t(yx−xi − y2S(ȳ)yx+xi−2] (4.29)

where y2S(ȳ) is to be expanded in powers of y.
If we define

T (y) = 1− y2S(ȳ) =
κ2(1− y4)

1− (κ1 + κ2 − 2)y2 − (κ2 − 1)y4
(4.30)

then we have
Zs
t (x|xi;κ1, κ2) = CTy[Λ

t(yx−xi − (1− T (y))yx+xi−2)] (4.31)

and for xi = 1 we have the simple result:

Zs
t (x|1;κ1, κ2) = CTy[Λ

tT (y)yx−1] (4.32)

Factorising the denominator of T (y) in (4.30) as (1 − cy2)(1 − dy2), we have the variable
transformations

c+ d = κ1 + κ2 − 2 cd = 1− κ2 (4.33)

that is,

κ1 = (c+ 1)(d+ 1) κ2 = 1− cd (4.34)

This gives

Zs
t (x|1;κ1, κ2) = CTy

[
κ2Λt(1− y4)yx−1

(1− cy2)(1− dy2)

]
(4.35)

We note that, for c 6= d

1

(1− cy2)(1− dy2)
=

1

c− d

(
c

1− cy2
− d

1− dy2

)
(4.36)

14



So we have:

Zs
t (x|1;κ1, κ2) = CT

[
κ2Λt+1(1− y2)yx

c− d

(
c

1− cy2
− d

1− dy2

)]
(4.37)

The single walk partition function for the dry wall case Ut(x; c) = Zs
t (x|1;κ1, 1) found in Brak

and Essam [5] as

Ut(x; c) = CT

[
Λtyx(1− y2)

1− cy2

]
(4.38)

allows a neat expression for the damp case. When x = 1,

Ut(1; c) =
1

1 + c
Ut+1(0; c) (4.39)

and so we can express Zs
t (1|1;κ1, κ2) in terms of this dry wall partition function:

Zs
t (1|1;κ1, κ2) =

κ2

c− d

(
c

1 + c
Ut+2(0; c)− d

1 + d
Ut+2(0; d)

)
(4.40)

Let us introduce the variables ωc and ωd as

ωc =
c

(1 + c)2
ωd =

d

(1 + d)2
. (4.41)

Now from Brak and Essam [5] we know that

U2r+2(0; c) = (1 + c)

(
ω−rc

(c+ 1)(c− 1)

c2
θ(c− 1) +

1

c

∞∑
s=r+1

Csω
s−r
c

)
(4.42)

with θ being the unit step function, and so we have a complete expression for the single walk
partition function.

4.1.2 Recurrence relations for single walk partition function

If we express T (y) as

T (y) = κ2Λy(1− y2) +
κ2Λy(1− y2)((c+ d)y2 − cdy4)

(1− cy2)(1− dy2)
(4.43)

then substituting this into (4.32) gives a recurrence in the end point position:

Zs
t (x|1;κ1, κ2) = κ2Bt+1,x + (c+ d)Zs

t (x+ 2|1;κ1, κ2)− cdZs
t (x+ 4|1;κ1, κ2) (4.44)

where Bt,x is the Ballot number:

Bt,x =
(x+ 1)t!

(1
2
(t+ x) + 1)!(1

2
(t− x))!

= CTy[(y + ȳ)t(1− y2)yx] (4.45)

Similarly,

Zs
t (x|1;κ1, κ2) =

κ2(ωc − ωd)
c− d

CTy

[
Λt+2(1− y2)

(1− ωcΛ2)(1− ωdΛ2)

]
(4.46)

gives a recurrence in the length t:

Zs
t (1|1;κ1, κ2) =

κ2(ωc − ωd)
c− d

C 1
2
t+1 + (ωc + ωd)Z

s
t+2(1|1;κ1, κ2)− ωcωdZs

t+4(1|1;κ1, κ2) . (4.47)
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4.1.3 Recurrence for partition functions for vesicles with a fixed end

We can simplify the determinant (4.8) to be only in terms of single walk partition functions
beginning at 1, by using the relationship:

Zs
t (x|3;κ1, κ2) =

1

κ2

(
Zs
t+2(x|1;κ1, κ2)− (κ1 + κ2)Zs

t (x|1;κ1, κ2)
)
. (4.48)

obtained by the general recurrences (4.14), (4.15) and (4.16). Applying this to (4.8) gives

ZTt (x|1;κ1, κ2) =
1

κ2

∣∣∣∣ Zs
t (x|1;κ1, κ2) Zs

t (x+ 2|1;κ1, κ2)
Zs
t+2(x|1;κ1, κ2) Zs

t+2(x+ 2|1;κ1, κ2)

∣∣∣∣ (4.49)

We shall see below that we will only need to consider ZTt (1|1;κ1, κ2) to evaluate Źνt (κ1, κ2)
so from (4.49), if we set x = 1 we have:

ZTt (1|1;κ1, κ2) =
1

κ2

∣∣∣∣ Zs
t (1|1;κ1, κ2) Zs

t (3|1;κ1, κ2)
Zs
t+2(1|1;κ1, κ2) Zs

t+2(3|1;κ1, κ2)

∣∣∣∣ (4.50)

Applying the physical property of (4.48) (traversed backwards in this case), we have:

ZTt (1|1;κ1, κ2) =
1

κ2
2

∣∣∣∣ Zs
t (1|1;κ1, κ2) Zs

t+2(1|1;κ1, κ2)
Zs
t+2(1|1;κ1, κ2) Zs

t+4(1|1;κ1, κ2)

∣∣∣∣ (4.51)

Now, setting t = 2r and substituting into the recurrence (4.47), we have:

ZT2r(1|1;κ1, κ2) =
ωc − ωd
κ2(c− d)

∣∣∣∣ Cr+1 Zs
2r+2(1|1;κ1, κ2)

Cr+2 Zs
2r+4(1|1;κ1, κ2)

∣∣∣∣+ ωcωdZ
T
2r+2(1|1;κ1, κ2) (4.52)

This will be the main recurrence that we will be required to solve.

4.1.4 Simplifying the partition function for vesicles with a free end

We now seek an expression for the free end vesicle partition function Źνt (κ1, κ2). We begin by
combining a recurrence found earlier from the single walk partition function with the Gessel-
Viennot expression of the fixed end vesicle partition function. That is, we can use (4.44) to
simplify (4.49) to:

ZTt (x|1;κ1, κ2) = Dt(x) + (1− κ2)ZTt (x+ 2|1;κ1, κ2), x 6= 0 (4.53)

ZTt (0|1;κ1, κ2) =
1

κ2

(Dt(0) + (1− κ2)ZTt (2|1;κ1, κ2)) (4.54)

where

Dt(x) =

∣∣∣∣Bt+1,x Zs
t (x+ 2|1;κ1, κ2)

Bt+3,x Zs
t+2(x+ 2|1;κ1, κ2)

∣∣∣∣ (4.55)

Using (4.32) and (4.45), we can hence write:

Dt(x) = CTy1,y2 [Λ
t+1
1 Λt

2(Λ2
2 − Λ2

1)(y1y2)x(1− y2
1)y2T (y2)] (4.56)

Summing (4.53) over x and using (4.54) gives:

Źνt (κ1, κ2) =
1

κ2

(
t+1∑
x=0

Dt(x)− cdZTt (1|1;κ1, κ2)

)
(4.57)
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We now consider separately the free end vesicle partition function for vesicles of even length.
We note that for even t, ZTt (x|1;κ1, κ2) = 0 when x is even, and also

(Λ2
2 − Λ2

1)
∞∑
y=0

(y1y2)2y+2 = y2
1 − y2

2 (4.58)

and also that ZTt (x|1;κ1, κ2) = 0 when x + t is even. So, applying these to (4.56) for t even,
we have:

r∑
y=0

D2r(2y + 1) = CTy1,y2 [Λ
2r+1
1 Λ2r

2 (y2
1 − y2

2)ȳ1(1− y2
1)T (y2)]

= CTy1,y2 [Λ
2r+1
1 Λ2r

2 ((y1 + ȳ1)(1− y2
1) + (y1 − ȳ1)(1 + y2

2))T (y2)] (4.59)

But

CTy1,y2 [Λ
2r+1
1 (y1 − ȳ1)F (y2)] = CTy1,y2 [y1Λ2r+1

1 F (y2)− ȳ1Λ2r+1
1 F (y2)] = 0 (4.60)

as the second term is identical to the first when y1 and ȳ1 are interchanged. So we have:

r∑
y=0

D2r(2y + 1) = CTy1,y2 [Λ
2r+2
1 (1− y2

1)]CTy1,y2 [Λ
2r
2 T (y2)] = Cr+1Z

s
2r(1|1;κ1, κ2) (4.61)

So we have an expression for the free end partition function for vesicles of even length:

Źν2r(κ1, κ2) =
1

κ2

(
Cr+1Z

s
2r(1|1;κ1, κ2) + (κ2 − 1)ZT2r(1|1;κ1, κ2)

)
(4.62)

We obtain a similar result for t odd:

Źν2r+1(κ1, κ2) =
1

κ2

Cr+1Z
s
2r+2(1|1;κ1, κ2) (4.63)

Therefore we now have expressions (4.62) and (4.63) for the partition function of vesicles
with free ends, of even and odd lengths, in terms of single walk partition functions and fixed-end
vesicle partition functions where the beginning and end points are at xi = xf = 1.

4.1.5 Solving for the generating function of damp vesicles

The generating function

G(z;κ1, κ2) =
∞∑
r=0

Źν2r(κ1, κ2)z2r +
∞∑
r=0

Źν2r+1(κ1, κ2)z2r+1 (4.64)

using (4.62) and (4.63), is given by

G(z;κ1, κ2) =
1

κ2

∞∑
r=0

Cr+1

[
Zs

2rz
2r + Zs

2r+2z
2r+1

]
(4.65)

+
κ2 − 1

κ2

∞∑
r=0

ZT2rz
2r

where Zs
2r ≡ Zs

2r(1|1;κ1, κ2) as given by equation (4.40), and ZT2r ≡ ZT2r(1|1).
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To find our generating functionG(z;κ1, κ2) we must find the generating function
∑∞

r=0 Z
T
2rz

2r

which we shall do using the recurrence (4.52).
Let us define

H(z) =
∞∑
r=0

ZT2rz
2r (4.66)

and

gr =

∣∣∣∣ Cr Zs
2r

Cr+1 Zs
2r+2

∣∣∣∣ (4.67)

Multiplying (4.52) by z2r and summing over r gives us

H(z) =
ωc − ωd
κ2(c− d)

∞∑
r=0

gr+1z
2r + ωcωd

∞∑
r=0

ZT2r+2z
2r

H(z)
(

1− ωcωd
z2

)
=

ωc − ωd
κ2(c− d)

∞∑
r=0

gr+1z
2r − ωcωd

z2
ZT0

H(z) =
1

κ2
1(z2 − ωcωd)

∞∑
r=1

grz
2r − κ2ωcωd

z2 − ωcωd
(4.68)

Hence

Gdv(z;κ1, κ2) =
1

κ2

∞∑
r=0

Cr+1

[
Zs

2rz
2r+2 + Zs

2r+2z
2r+3

]
+

κ2 − 1

κ2κ2
1(z2 − ωcωd)

∞∑
r=1

[
CrZ

s
2r+2 − Cr+1Z

s
2r

]
z2r+2

− (κ2 − 1)ωcωdz
2

z2 − ωcωd
(4.69)

This represents the solution for the generating function of staircase polygons above a damp
wall with one end fixed and the other end free.

4.2 Percolation probability for the damp wall

Note that if κ1, κ2 are set to the values which relate to the percolation problem:

z = pq κ1 =
pw
pq

κ2 =
qw
q

(4.70)

then the values of the other variables are:

c =
p

q
d =

pw − p
p

(4.71)

and

ωc = pq ωd =
p

p2
w

(pw − p) (4.72)

Note in particular that z = ωc.
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Since z = ωc we have

H(ωc) =
1

κ2ωc(c− d)

(
∞∑
r=0

grω
2r
c − g0

)
− κ2ωd
ωc − ωd

=
1

κ2ωc(c− d)

∞∑
r=0

grω
2r
c −

κ1 + κ2 − 1

ωc(c− d)
− κ2ωd
ωc − ωd

=
1

κ2ωc(c− d)

∞∑
r=0

grω
2r
c −

κ1

ωc(c− d)
(4.73)

So, recalling the definition of H(z) in (4.66), and substituting (4.67) into (4.73), we have:

∞∑
r=0

ZT2rω
2r
c =

1

κ2ωc(c− d)

∞∑
r=0

(
CrZ

s
2r+2 − Cr+1Z

s
2r

)
ω2r
c −

κ1

ωc(c− d)
(4.74)

G(ωc(p, pw);κ1(p, pw), κ2(p, pw)) =
1

1− cd

∞∑
r=0

Cr+1Z
s
2rω

2r
c

− cd

κ2ωc(1− cd)(c− d)

∞∑
r=0

(
CrZ

s
2r+2 − Cr+1Z

s
2r

)
ω2r
c

+
cdκ1

ωc(c− d)(1− cd)
+

1

1− cd

∞∑
r=0

Cr+1Z
s
2r+2ω

2r+1
c (4.75)

Noting the form of Zs
2r(1|1) from (4.40) and (4.42), we are able to rewrite G(ωc, κ1, κ2) as:

G(ωc;κ1, κ2) = θ(c− 1)C− θ(d− 1)D + Ωc −Ωd +
cdκ1

ωc(c− d)(1− cd)
(4.76)

We define (and treat) each of C,D,Ωc and Ωd below separately, making use, where possible,
of the result:

∞∑
s=1

Csz
s =

1− 2z −
√

1− 4z

2z
(4.77)

C =
c2 − 1

c(c− d)

(
∞∑
r=0

Cr+1ω
r
c +

∞∑
r=0

Cr+1ω
r
c +

cd

κ2ωc(c− d)

(
∞∑
r=0

Cr+1ω
r
c −

∞∑
r=0

Crω
r−1
c

))
(4.78)

Using (4.77), (4.70)–(4.72) and setting q = 1− p gives:

C =
(1− 2q)(q2 − q + qw + qqw − 4q2qw + 2q2q2

w)

qqw(1− q)2(1− 2q + qqw)2
(4.79)

We do not need to consider D, as θ(d− 1) = 0 in the region p >
1

2

Ωc =
1

c− d

(
∞∑
r=0

Cr+1ω
r
c

∞∑
s=r+1

Csω
s
c +

∞∑
r=0

Cr+1ω
r
c

∞∑
s=r+2

Csω
s
c

)

+
cd

κ2ωc(c− d)2

(
∞∑
r=0

Cr+1ω
r
c

∞∑
s=r+1

Csω
s
c −

∞∑
r=0

Crω
r−1
c

∞∑
s=r+2

Csω
s
c

)
(4.80)

19



Making use of (4.77), we can rewrite Ωc as:

Ωc = J1 + J2 (4.81)

where

J1 =
(1− 2ωc −

√
1− 4ωc)

2

4ω3
c (c− d)

− cd(1− 2ωc −
√

1− 4ωc)

2ω3
cκ2(c− d)2

(4.82)

and J2 will be considered later.
Using (4.70)–(4.72) and setting q = 1− p gives:

J1 =
q2

(1− q)2(1− 2q + qqw)
− q(q − qw)

qw(1− q)(1− 2q + qqw)2
(4.83)

Ωd =
1

c− d

(
∞∑
r=0

Cr+1

(
ω2
c

ωd

)r ∞∑
s=r+1

Csω
s
d +

ωc
ωd

∞∑
r=0

Cr+1

(
ω2
c

ωd

)r ∞∑
s=r+2

Csω
s
d

)

+
cd

κ2ωc(c− d)2

(
∞∑
r=0

Cr+1

(
ω2
c

ωd

)r ∞∑
s=r+1

Csω
s
d −

1

ωd

∞∑
r=0

Cr

(
ω2
c

ωd

)r ∞∑
s=r+2

Csω
s
d

)
(4.84)

Similarly to (4.81), we can rewrite Ωd by extracting the portion of (4.84) to which we can
apply (4.77), and express

Ωd = K1 +K2 (4.85)

where

K1 =
1

c− d

(
1 +

ωc
ωd

) ∞∑
r=0

Cr+1

(
ω2
c

ωd

)r ∞∑
s=1

Csω
s
d

+
cd

κ2ωc(c− d)2

(
∞∑
r=0

Cr+1

(
ω2
c

ωd

)r ∞∑
s=1

Csω
s
d −

1

ωd

∞∑
r=0

Cr

(
ω2
c

ωd

)r ∞∑
s=1

Csω
s
d

)
(4.86)

and K2 will be considered later.
Using (4.77), (4.70)–(4.72) and setting q = 1− p gives, with a lot of manipulation:

K1 = − q(q − qw)(1− qw)2

qw(1− q)(1− 2q + qqw)2
(4.87)

Substituting (4.79), (4.83), (4.87), into (4.76) gives:

G

(
pq;

pw
pq
,
qw
q

)
= θ(c− 1)C− θ(d− 1)D + Ωc −Ωd +

(q − qw)(1− qw)

qqw(1− q)(1− 2q + qqw)
(4.88)

=
q − 2q2 + qw − 2qqw + q2qw
q(1− q)2(1− 2q + qqw)

+ J2 −K2 (4.89)

where J2 and K2 are defined in (4.80) and (4.84) respectively so that:

J2 −K2 =
cd

κ2ωc(c− d)2

(
∞∑
r=0

Crω
r−1
c

r+1∑
s=1

Csω
s
c −

∞∑
r=0

Cr+1ω
r
c

r∑
s=1

Csω
s
c

)

+
1

c− d

∞∑
r=0

Cr+1

(
ω2
c

ωd

)r( r∑
s=1

Csω
s
d +

ωc
ωd

r+1∑
s=1

Csω
s
d

)

+
cd

κ2ωc(c− d)2

(
∞∑
r=0

Cr+1

(
ω2
c

ωd

)r r∑
s=1

Csω
s
d −

1

ωd

∞∑
r=0

Cr

(
ω2
c

ωd

)r r+1∑
s=1

Csω
s
d

)
(4.90)
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With manipulation of (4.90) it can be shown that J2 −K2 = 0.
Hence, for p > 1

2
:

G

(
pq;

pw
pq
,
qw
q

)
=
q − 2q2 + qw − 2qqw + q2qw
q(1− q)2(1− 2q + qqw)

(4.91)

Using the relationship (3.9) between the generating function and the percolation probability
we finally arrive at the main result:

P (p, pw) = 1− q2G

(
pq;

pw
pq
,
qw
q

)
=

(1− 2q)2

(1− q)2(1− 2q + qqw)
(4.92)

We can also check with great difficulty that P (p, pw) = 0 for p ≤ 1/2.
We have hence arrived at the percolation probability for the damp case:

P (p, pw) =


(1− 2q)2

(1− q)2(1− 2q + qqw)
, p > 1

2

0 p ≤ 0

(4.93)
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Figure 5: P (p, pw) plotted over p ∈ [1
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We now check that the expression we have found for the damp percolation probability is
consistent with the previously found wet and dry cases. The wet case corresponds to pw = 1,
giving:

P (p, 1) =
(1− 2q)

(1− q)2
(4.94)

which is the same as the result obtained for the wet case.
The dry case corresponds to pw = 0 giving:

P (p, 0) =
(1− 2q)2

(1− q)3
(4.95)
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which is the same as the result obtained for the dry case.
We can also note from the damp case that the exponent (β = 2) is the same as in the dry

case, and the transition value of p = 1
2

remains unchanged by the value of pw, which is a surface
effect.

5 Functional Equation approach

In this section we use a functional-equation approach to compute the percolation probability.
While this calculation reproduces the results from Section 4, it is a new application of the
family of techniques known as the “kernel method”. These techniques have been used to great
effect in combinatorics and indeed one can see that the resulting calculations are somewhat
simpler.

The main drawback of this approach is that we have not yet been able to extend this
technique to other quantities of interest like the mean cluster length. While it is in principle
possible to use the kernel method to obtain the generating function of the two-walker two-
interaction system, we have not yet done so due to the complexity of the resulting expressions.
We include both approaches here to demonstrate their strengths and weaknesses.

5.1 Functional equation for the two-walker system

In order to apply the functional equation method we construct the two-walker system column-
by-column. In particular, each configuration in the two walker system is either of length zero, or
can be constructed by appending a step to each walk of a shorter configuration. To this end we
define f(s, r; z, κ1κ2) to be the generating function for number of configurations of two directed
walkers above a wall starting from (0, 0) and (0, 2). Note that this differs from the definition
of the walks enumerated by G by one pair of steps. The variable s is conjugate to the height
of the lower walker above the wall and r is conjugate to the separation of the end points minus
two. In the text below we will often use the shorter notation f(s, r) ≡ f(s, r; z, κ1, κ2). We
will also use the notation [s`]{f(s, r)} to denote the coefficient of s` in the generating function
f(s, r) and similarly for coefficients of r.

In order to compute the percolation probability we need to recover the generating function
G(z;κ1, κ2). This is given by those two-walker configurations in which the walkers end together
at any non-negative height. The connection between the two sets of walks gives f(1, 0;κ1, κ2) =
1 + zG(z;κ1, κ2). The percolation probability is therefore given by

P (p, pw) = 1− q

p

(
f

(
1, 0; pq,

pw
pq
,
qw
q

)
− 1

)
(5.1)

We now derive a functional equation for f . Each configuration is either a single vertex
— this contributes 1 to the generating function, or is obtained by appending a single step
to the end of each walk in a smaller configuration. There are four possibly ways in which
a single step can be appended to the end of each path — two north-east steps, two south-
east steps and one north-east step and one south-east step (in two different ways). This gives
z(s + s/r + r/s + 1/s) · f(s, r). However, in appending steps in this way, we have produced
invalid configurations and we must subtract off these contributions.

• Appending a south-east step to the lower walk when it finishes on the wall results in an
invalid configuration (no matter which step is added to the upper walk) since the resulting
walk steps below the wall. This gives: −z 1+r

s
· [s0]{f(s, r)}.
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• Appending a north-east step to the lower walk and a south-east step to the upper walk
of a configuration whose endpoints are touching results in an invalid configuration since
the walkers cross. This gives −z s

r
· [r0]{f(s, r)}.

This construction results in the functional equation

f(s, r) = 1 + z

(
s+

s

r
+
r

s
+

1

s

)
f(s, r)− z(1 + r)

s
· [s0] {f(s, r)} − zs

r
· [r0] {f(s, r)}

+ interaction terms. (5.2)

We now take care of the interaction terms. In order to do this we subtract off the terms that
have not yet been weighted by the interaction terms and add back the same contributions but
with additional factors of κ1 and κ2 as necessary.

• When the lower walk steps south-east from height 1 onto the wall the weight of the
configuration should increase by a single power of κ1 (no matter which step is appended
to the other walk). This gives z(κ1 − 1)(1 + r) · [s1]{f(s, r)}.

• Similarly when the lower walk steps north-east from height 0 or south-east from height 2
to end at height 1, then the weight of the configuration should increase by a single power
of κ2. This gives z(κ2 − 1)s(1 + r) · [s2] {f(s, r)}+ z(κ2 − 1)s

(
1 + 1

r

)
· [s0] {f(s, r)}

• However this last term possibly reintroduces configurations in which the walkers cross
and so these must be subtracted off again to give −z(κ2 − 1) s

r
· [s0r0] {f(s, r)}.

Putting these terms together and rewriting the coefficients in terms of derivatives gives

f(s, r) = 1 + z

(
s+

s

r
+
r

s
+

1

s

)
f(s, r)− zs

r
f(s, 0)− z(1 + r)

s
f(0, r)

+ z(κ1 − 1)(1 + r)
∂f

∂s
(0, r) + z(κ2 − 1)

s(1 + r)

2

∂2f

∂s2
(0, r) + z(κ2 − 1)s

(
1 +

1

r

)
f(0, r)

− z(κ2 − 1)
s

r
f(0, 0) (5.3)

We can now simplify this equation and remove the two unknowns ∂f
∂s

(0, r) and ∂2f
∂s2

(0, r) by
differentiating equation (5.3) repeatedly and setting s = 0. Differentiating once and setting
s = 0 gives:

zκ1(1 + r)
∂f

∂s
(0, r) = f(0, r)− 1. (5.4)

Differentiating twice and setting s = 0 gives:

zκ2r(1 + r)
∂2f

∂s2
(0, r) = 2

(
r
∂f

∂s
(0, r)− zκ2(1 + r)f(0, r) + zκ2f(0, 0)

)
(5.5)

Substituting both of these expressions back into equation (5.3) and multiplying by sr gives the
following expression:

f(s, r)K(s, r) = A(s, r) +B(s, r)f(s, 0) + C(s, r)f(0, r) (5.6)

where

K(s, r) = sr − z(s2r + s2 + r2 + r), (5.7a)

A(s, r) =
sr

κ1

− s2r(κ2 − 1)

zκ1κ2(1 + r)
, (5.7b)

B(s, r) = −zs2, (5.7c)

C(s, r) = −zr(1 + r) +
(κ1 − 1)sr

κ1

+
(κ2 − 1)s2r

zκ1κ2(1 + r)
. (5.7d)

23



The polynomial K(s, r) is called the kernel. Note that this new equation does not contain the

term f(0, 0); it has been canceled in the process of removing ∂f
∂s

(0, r) and ∂2f
∂s2

(0, r).
Rather than solving this equation directly to obtain f(s, r), we will first map to the perco-

lation problem and solve for f(1, 0) using the kernel method. The above functional equation
contains several unknown functions; by making careful choices of s and r we can cancel the
kernel and generate new equations that allow us to eliminate these unknown functions and so
solve for f(1, 0).

Recall that we map to the percolation problem by setting

z 7→ pq κ1 7→
pw
pqw

κ2 7→
qw
q

(5.8)

where q = 1 − p and qw = 1 − pw. Setting pw = p returns us to the dry-wall case (κ1 = 1/q,
κ2 = 1).

We first solve the equation in the case of small p and then solve in the case of small q.
We do not need the full f(s, r) generating function; we only require f(1, 0) since it counts
configurations with endpoints adjacent but lying any distance above the wall.

5.2 Small p

Consider the functional equation after mapping to the percolation problem and with all q and
qw terms rewritten in terms of p and pw. This gives

K(s, r) = sr − p(1− p)(s2r + s2 + r2 + r) (5.9a)

A(s, r) =
srp(pw − 1)

pw
+

s2r(p− pw)

(1 + r)(p− 1)pw
(5.9b)

B(s, r) = −p(1− p)s2 (5.9c)

C(s, r) = −p(1− p)r(1 + r) +
sr(pw − p+ ppw)

pw
− s2r(p− pw)

(1 + r)(1− p)pw
(5.9d)

If we try to set s = 1, r = 0 in the functional equation then we obtain the tautology f(1, 0) =
f(1, 0).

Instead we set s = 1 and then look for values of r that set K(s, r) = 0; this is the idea
of the kernel method. Doing so gives two solutions r = p

1−p ,
1−p
p

. Since we wish to obtain a

solution that is valid for small p, we cannot substitute the second of these (it will result in a
power series that is singular as p → 0). When we substitute s = 1, r = p

1−p , K is zero and by
happy coincidence, C is also zero; we are left with

0 = p− p(1− p)f(1, 0). (5.10)

So f(1, 0) = 1
1−p and thus the percolation probability is given by

P (p) = 1− 1− p
p

(f(1, 0)− 1) = 0 (5.11)

as is expected for small p.
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5.3 Small q

Now consider equation (5.6) mapped to the percolation problem and with everything written
in terms of q, qw.

K(s, r) = sr − q(1− q)(s2r + s2 + r2 + r) (5.12a)

A(s, r) =
sr(1− q)qw

(1− qw)
+

s2r(q − qw)

(1 + r)q(1− qw)
(5.12b)

B(s, r) = −q(1− q)s2 (5.12c)

C(s, r) = −q(1− q)r(1 + r) +
sr(1− 2qw + qqw)

1− qw
− s2r(q − qw)

(1 + r)q(1− qw)(1 + r)
(5.12d)

The kernel method does not work as cleanly in this case and we must make several different
substitutions for s, r in order to obtain f(1, 0).

• As above, we start by setting s = 1 and r = q
1−q which cancels K:

(1− 2q)qw
(1− qw)

f

(
0,

q

1− q

)
+
q + qqw − qw

1− qw
− q(1− q)f(1, 0) (5.13)

We will return to this equation after we have found f
(

0, q
1−q

)
.

• Since we have f(1, 0) in terms of f
(

0, q
1−q

)
, we next set r = q

1−q . We see that there are

two values of s that cancel K, namely s = 1, q
1−q . Setting s = r = q

1−q cancels both K
and C:

f

(
q

1− q
, 0

)
=

1

1− q
. (5.14)

• Since we have f
(

q
1−q , 0

)
in closed form, set s = q

1−q and leave r = r. This results in an

ugly expression involving f
(

q
1−q , r

)
, f
(

q
1−q , 0

)
and f(0, r).

Substitute f
(

q
1−q , 0

)
= 1

1−q into this expression and then remove the resulting common

factor of (q− r(1− q)). This leaves an equation in f
(

q
1−q , r

)
and f(0, r). The coefficient

of the first of these terms can be cancelled by setting r = q
1−q . This leaves:

f

(
0,

q

1− q

)
=

1− q
1− 2q + qw

(5.15)

which is precisely what we require to find f(1, 0).

• Substitute this into equation 5.13 to get

f(1, 0) =
1− 2q + qw − qqw

(1− q)(1− 2q + qqw)
(5.16)

The percolation probability is therefore

P (q, qw) = 1− q

1− q
(f(1, 0)− 1) =

(1− 2q)2

(1− q)2(1− 2q + qqw)
(5.17)

which is precisely the result obtained in equation (4.93).
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6 Discussion

The next natural step in this work will be to find the mean length and mean number of contacts
for finite clusters near a damp wall. It is anticipated that this will be able to be achieved using
similar methods to those used to find these properties in the dry case [5]. This will involve
finding differential equations satisfied by the cluster properties, and using Zeilberger’s algorithm
to allow us to compute derivatives of the vesicle partition function, and hence calculate the mean
length of finite clusters and mean number of surface contacts.

Following this work, there are many other directions which could be pursued in this area of
research. For example, we have so far only considered the damp case for a seed width (m) of
one, so it might be of interest to investigate the percolation probability for general m. Another
variation on this problem would be to investigate the effect of having a bias: that is, assign
a probability pu for ‘up’ steps, and a probability pd for ‘down’ steps, rather than the same
probability p for both. It would also be possible to consider the effect of more than one wall,
or perhaps a wall that was not perpendicular to the direction of movement of the cluster.
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[3] M. Bousquet-Mèlou, A. J. Guttmann, W. P. Orrick, and A. Rechnitzer. Inversion relations,
reciprocity and polyominoes. Annals of Combinatorics, 3(2-4):223 249, 1999.

[4] R. Brak and J. W. Essam. Asymmetric exclusion model and weighted lattice paths. J.
Phys. A: Math. Gen, 37 (14):4183 4217, 2004.

[5] R. Brak and J. W. Essam. Directed compact percolation near a wall: III. Exact results
for the mean length and number of contacts. J. Phys. A: Math. Gen, 32:353–367, 1999.

[6] R. Brak and A. J. Guttmann. Exact solution of the staircase and row-convex polygon
perimeter and area generating function. J. Phys. A: Math. Gen., 23:4581–4588, 1990.

[7] J. L. Cardy and P. Grassberger. Epidemic models and percolation. J. Phys. A, 18:L267,
1985.

[8] E. Domany and W. Kinzel. Equivalence of cellular automata to Ising models and directed
percolation. Phys. Rev. Lett., 53:311–314, 1984.

[9] R. Durrett. Oriented percolation in two dimensions. The Annals of Probability, 12 (4):999
1040, 1984.

[10] J. W. Essam. Directed compact percolation: cluster size and hyperscaling. J. Phys. A:
Math. Gen, 22:4927–4937, 1989.

26



[11] J. W. Essam and A. J. Guttmann. Directed compact percolation near a wall: II. Cluster
length and size. J. Phys. A: Math. Gen, 28.

[12] J. W. Essam, A. J. Guttmann, I. Jensen, and D. TanlaKishani. Directed percolation near
a wall. J. Phys. A: Math. Gen, 29:1619–1628, 1996.

[13] J. W. Essam and D. TanlaKishani. Disorder in Physical Systems. ed G. R. Grimmett and
D. J. A. Welsh (Oxford: Oxford University Press), 1990.

[14] J. W. Essam and D. TanlaKishani. Directed compact percolation near a wall: I. Biased
growth. J. Phys. A: Math. Gen, 27:3743–3750, 1994.

[15] I. M. Gessel and G. Viennot. Binomial determinants, paths, and hook length formulae.
Advances in Mathematics, 58(3):300 321, 1985.

[16] I. M. Gessel and X. Viennot. Determinants, paths, and plane partitions. preprint, 1989.
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