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We introduce a new class of models for polymer collapse, given by random walks on regular
lattices which are weighted according to multiple site visits. A Boltzmann weight ωl is assigned to
each (l + 1)-fold visited lattice site, and self-avoidance is incorporated by restricting to a maximal
number K of visits to any site via setting ωl = 0 for l ≥ K. In this paper we study this model on
the square and simple cubic lattices for the case K = 3. Moreover, we consider a variant of this
model, in which we forbid immediate self-reversal of the random walk. We perform simulations for
random walks up to n = 1024 steps using FlatPERM, a flat histogram stochastic growth algorithm.
Unexpectedly, we find evidence that the existence of a collapse transition depends sensitively on the
details of the model.

I. INTRODUCTION

The transition of a flexible macromolecular chain from
a random-coil conformation to a globular compact form,
called coil-globule transition, has been a subject of exten-
sive theoretical and experimental studies [1]. Generally,
polymers in a good solvent are modelled by random walks
with short-range repulsion (excluded volume). Polymers
undergoing a coil-globule transition are then modelled by
adding an additional short-range attraction. The canoni-
cal lattice model [2, 3] for this transition is given by inter-
acting self-avoiding walks (ISAW), in which self-avoiding
random walks on a lattice are weighted according to the
number of nearest-neighbour contacts.

From the point of view of continuum models, the draw-
back of ISAW is that it contains two different kind of in-
teractions (on-site and nearest-neighbour). In this paper,
we introduce a different class of lattice models for poly-
mer collapse, which has only on-site interactions. This is
in spirit similar to the Domb-Joyce model [4], in which
a random walk is weighted according to the number of
multiple visits of lattice sites.

It is generally assumed that any reasonable random-
walk model with excluded volume and short-range at-
traction should describe the coil-globule transition. Ad-
ditionally, if the collapsed globule is a liquid-like bubble,
the transition is expected to be second-order [5], and if
the collapsed globule is frozen the transition is expected
to be first-order [6], at least in three dimensions.

However, an investigation of our new class of mod-
els reveals that not only the strength of the coil-globule
transition, but its very existence depends sensitively on
details of the model.
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II. THE CLASS OF MODELS AND THE
ALGORITHM

We consider n-step random walks ξ = (~ξ0, ~ξ1, . . . , ~ξn)
on a lattice. The number of visits to each site ~x induces
a density φξ on the lattice sites ~x via

φξ(~x) =
n∑

i=0

δ~ξi,~x . (1)

Interpreting the density φ = φξ as a field induced by a
particular random walk configuration ξ, we denote the
energy of the field as E(φ). In the Domb-Joyce model,
the energy functional is given by

EDJ (φ) = a
∑

~x

φ(~x) + b
∑

~x

φ2(~x) . (2)

The first term in this expression is simply related to the
length n of the random walk, as

∑

~x

φ(~x) = n+ 1 , (3)

so that a is related to a chemical potential. For b = 0
we have a pure random walk, while for b < 0 the model
is weakly self-avoiding. The case b > 0 leads to an ex-
tremely collapsed phase, which is dominated by configu-
rations occupying few lattice sites with very high density.
Thus, while this model is capable of modelling the swollen
polymer regime, further terms in the energy functional
need to be taken into consideration to model “realistic”
polymer collapse.

Generalizing Eq. 2, we write the energy for a given
configuration ξ as

E(ξ) = E(φξ) =
∑

~x

f (φ(~x)) . (4)

In Eq. 2, f(t) is simply the quadratic polynomial f(t) =
at+ bt2, and any particular choice of f(t) gives an alter-
native to the Domb-Joyce model.
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Restricting to a maximal number K of visits to any
site incorporates self-avoidance. Choosing K = 1 gives
self-avoiding walks, and for K > 1 we obtain a model
with K− 1 parameters. To be precise, we choose f to be
given by f(0) = f(1) = 0,

f(2) = ε1 , f(3) = ε2 , . . . f(K) = εK−1 (5)

and f(t) = ∞ for t > K. Thus, each l-fold visited site
contributes εl−1 to the energy of a configuration.

The canonical partition function is given by

Zn(β) =
∑

|ξ|=n+1

e−βE(ξ) , (6)

where the sum extends over all random walk configura-
tions with n steps, respectively n+ 1 sites. Writing

~ε = (ε1, . . . , εK−1) and ~m = (m1, . . . ,mK−1) (7)

where ml denotes the number of sites which are occupied
by l + 1 monomers, the energy can be written as

E(~m) =
K−1∑

i=1

εimi = ~ε · ~m . (8)

This enables us to write the partition function Eq. 6 as

Zn(β) =
∑

~m

Cn,~me
−βE(~m) =

∑

~m

Cn,~me
~β·~m (9)

where Cn,~m denotes the density of states, and ~β =
(β1, . . . , βK−1) are generalized temperature parameters,
given by βl = −βεl. In other words, (l + 1)-fold visited
sites carry a Boltzmann weight ωl = eβl , with ω0 = 1
and ωl = 0 for l ≥ K.

The density of states is estimated directly by the Flat-
PERM algorithm (see below for a description). Any av-
eraged quantity Q over the set of parameters ~m for a
given length n is calculated by

〈Q〉n (~β) =

∑
~m

Qn,~mCn,~me
~β·~m

∑
~m

Cn,~me
~β·~m

. (10)

For our simulations, we restrict to K = 3, i.e. we only
allow two-fold and three-fold visits to any site, so that
we have two free parameters β1 and β2.

We consider two variants of the model which differ in
the underlying set of random walks used. For the first
variant, we include all simple random walk configura-
tions, whereas for the second variant, we only include
simple random walks without immediate self-reversal.
For this reason, we call the first variant RA for “reversal
allowed”, and the second variant RF for “reversal forbid-
den”. Clearly, RF configurations form a subset of RA
configurations. An example of a configuration of the RA
model is shown in Fig. 1 for the case of a square lattice.
We shall consider both models in two dimensions on the
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FIG. 1: Example of a 12-step walk on the square lattice with
self-reversal allowed (RA). A filled circle (green) denotes the
presence of a single monomer, filled squares (blue) - two and
empty squares (white) - three monomers. The numbers de-
note the sequence of monomers.

square lattice and in three dimensions on the simple cu-
bic lattice, so that we have a total of four models, which
we denote by RA2, RA3, RF2, and RF3.

We have simulated these four models using the Flat-
PERM algorithm [7]. The power of this algorithm is the
ability to sample the density of states uniformly with
respect to a chosen parametrisation, so that the whole
parameter range is accessible from one simulation.

The natural parameters for this problem are m1 and
m2. The algorithm directly estimates the density of
states Cn,m1,m2

for all n ≤ nmax and any value of m1

and m2. From this, we can then calculate all interest-
ing quantities using Eq. 10. As we need to store the full
density of states, we only perform simulations up to a
maximal length of nmax = 256.

Fixing one of the parameters β1 and β2 reduces the size
the histogram, and enables us to perform simulations of
larger systems. Fixing β2, say, the algorithm directly
estimates a partially summed density of states

C̄n,m1
(β2) =

∑

m2

Cn,m1,m2
eβ2m2 . (11)

In this way, we can simulate lengths up to nmax = 1024
at specifically chosen parameters β1 or β2. Any aver-
aged quantity 〈Q〉n is now calculated by using a suitably
modified version of relation 10.

III. RESULTS

For all four models we find SAW behaviour in the case
of repulsion (i.e. β1, β2 < 0). Here, singly visited sites
dominate, and the polymer is swollen, as is clearly ev-
ident from the scaling of the mean-squared end-to-end
distance.

When β2 � 0� β1, doubly visited sites should domi-
nate, and when β1 � 0 � β2, triply visited sites should
dominate. Our simulations confirm this, as well.
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FIG. 2: Model RF3 with two different phase transitions. On
varying β2 at fixed negative β1, there is one type of transition
(possibly first-order), and on varying β1 at fixed negative β2,
there is another. The dot represents the point at which the
type of transition changes.

We now turn to the question of phase transitions be-
tween these regimes. Naively one would expect to find
coil-globule transitions from the swollen phase to the col-
lapsed region. Moreover, for β1, β2 � 0, there is competi-
tion between doubly visited and triply visited sites, along
with the possibility of a further transition.

We have investigated this scenario in detail for all four
models.

A. RF3

For random walks with forbidden reversal on the sim-
ple cubic lattice (RF3), we find clear evidence of two
different phase transitions, leading to the phase diagram
sketched in Fig. 2. We cannot precisely locate the point
where the two phase transition lines meet, however, it is
likely that this point is located in the first quadrant.

We have analysed these two phase transitions from
simulations at β1 = −1.0 and β2 = −1.0, respectively.
Fig. 3 shows fluctuations in m1 along β2 = −1.0 and
fluctuations in m2 along β1 = −1.0. In both cases, there
is a buildup of fluctuations as the system size increases.
The transition at fixed β2 = −1.0 is stronger than the
transition at fixed β1 = −1.0. While the latter transition
is second-order, the former appears to be first-order. It
may be the case that the latter transition is of the same
type as ISAW collapse in three dimensions. The first-
order character of the former transition is supported by
the fact that the distribution of m2 near the transition
shows a weak bimodality, see Fig. 4. An investigation
of the scaling behaviour of the mean-squared end-to-end
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FIG. 3: Fluctuations in m2 at β1 = −1.0 (top) and in m1 at
β2 = −1.0 (bottom) for model RF3.
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FIG. 4: Distribution of m2 at β2 = −1.0 near the phase
transition for model RF3.

distance supports these conclusions.

There is no indication of any collapse-collapse transi-
tion in the first quadrant joining up with the point at
which the type of the collapse transition changes.
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FIG. 5: Fluctuations in m2 at β1 = −1.0 (top) and in m1 at
β2 = −1.0 (bottom) for model RA2, showing convergence to
smooth thermodynamic functions.

B. RA2

We now consider random walks with allowed reversal
on the square lattice (RA2), since it provides the largest
contrast with RF3. Surprisingly, for RA2, we do not
find any indication of a phase transition, but merely a
smooth crossover. Fig. 3 shows fluctuations in m1 along
β2 = −1.0 and fluctuations in m2 along β1 = −1.0. In
both cases, there is a smooth crossover, and no buildup
of fluctuations as the system size increases. There could,
of course, still be a weak transition. However, an investi-

gation of the scaling behaviour of the mean-squared end-
to-end distance supports the conclusion of no transitions.
At the three points (β1, β2) = (−1.0,−1.0), (−1.0, 1.0),
and (1.0,−1.0), we find clear evidence for self-avoiding
walk scaling behaviour. We conclude that RA2 is in the
self-avoiding walk universality class for all values of β1

and β2.

So it would seem that changing the dimension and
allowing for reversals has removed the phase transition
altogether. This is unexpected.

C. RA3/RF2

Our analysis of the two remaining models shows that
these in some way interpolate between RF3 and RA2.
Random walks with allowed reversal on the simple cubic
lattice (RA3) and random walks with forbidden reversal
on the square lattice (RF2) show behaviour similar to
each other.

For negative values of β1, we find a transition from a
swollen to a collapsed phase upon increasing β2. How-
ever, for negative values of β2, we cannot decide whether
there exists a very weak phase transition (the specific
heat exponent α may be negative) or a simple crossover.
An analysis of the mean-squared end-to-end distance
scaling is inconclusive.

IV. CONCLUSION

In conclusion, we have introduced and simulated var-
ious new models of polymer collapse in two and three
dimensions. We have found evidence that the type and
very existence of the transition depends crucially on sub-
tle aspects of the underlying lattice model, in particular
on whether the random walk contains immediate rever-
sals or not. There is clearly need for further work to be
done to understand these intriguing results. If backed up,
these results will surely challenge the current theoretical
framework of our understanding of polymer collapse.
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