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Abstract. We consider Motzkin path models for polymers confined to a slit.

The path interacts with each of the two confining lines and we define parameters

a and b to characterize the strengths of the interactions with the two lines. We

consider the cases where (i) each vertex in a confining line contributes to the

energy and (ii) where each edge in a confining line contributes to the energy.

For the vertex and edge versions of Motzkin paths we can find the generating

functions and give rigorous explicit expressions for the free energy at some special

points in the (a, b)-plane, and asymptotically (ie for large slit widths) elsewhere.

We find regions where the force between the lines is long-range and repulsive,

short-range and repulsive and short-range and attractive. Our results indicate

that the general form of the phase diagram is model independent, and similar to

previous results for a Dyck path model, although the details do depend on the

underlying configurational model.

We also contrast the method used here to find the generating function with

the transfer matrix and heap methods.

PACS numbers: 05.50.+q, 05.70.fh, 61.41.+e
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1. Introduction

The problem of long polymer molecules in a good solvent confined in one or more

dimensions by parallel plates has been studied by a variety of different path models

(DiMarzio & Rubin 1971, Brak et al. 2005, Janse van Rensburg et al. 2006). The

behaviour of such a system is both rich and interesting. When the plates are

non-attractive, the polymer’s entropy is reduced due to configurational restrictions

leading to a repulsive force on the plates. The repulsive nature of this force is

unchanged if one of the plates is attractive to the polymer, but its magnitude is

lessened by the energetic contributions of monomers in the attractive plate. This

behaviour is related to the phenomenon of steric stabilization, where a colloidal

dispersion is stabilized by a polymer which cannot adsorb onto the surfaces of its

particles. If instead we consider a polymer confined between two attractive plates,

the nature of the net force will depend on the distance between the plates. At

short distances, the loss of entropy dominates, resulting in a repulsive force. At

large distances, the force on the plates becomes attractive as the polymer tries to

maximize the number of monomers in the plates. This results in the phenomenon

of sensitized flocculation in the colloidal dispersion.

Most previous work was concerned with the self-avoiding and random walk

models (DiMarzio & Rubin 1971, Wall et al. 1977, Wall et al. 1978). The complexity

of the self-avoiding walk model means that only qualitative results are available

rigorously (Hammersley and Whittington 1985, Janse van Rensburg et al. 2006).

For the case where the polymer has no interaction with the confining plates we write

cn(w) for the number of self-avoiding walks on the simple cubic lattice Z3 starting

at the origin and required to have the z-coordinate of each vertex within the slab

0 ≤ z ≤ w. It is known that the limit

lim
n→∞

n−1 log cn(w) ≡ κ(w) (1.1)

exists. In addition it has been shown that

(i) κ(w) is strictly monotone increasing in w, and

(ii) lim
w→∞

κ(w) = κ

where κ is the connective constant of the lattice (Hammersley & Whittington 1985).
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Other results involving κ(w) are very limited. In the non-interactive regime, the

value of κ(w) is known exactly only for small values of w in two dimensions (Wall

et al. 1977, Wall et al. 1978). When the polymer interacts with either of the planes,

some numerical results are available (Janse van Rensburg et al. 2005) and there are

a few rigorous results about the free energy which establish bounds on the region of

the (a, b)-plane where the force is repulsive (Janse van Rensburg et al. 2006).

If one uses a simpler configurational model the situation improves. In a classic

paper, DiMarzio and Rubin (1971) studied a random walk on a regular lattice

confined between two parallel planes. They considered both the attractive and non-

attractive regimes but, for the attractive case, they only considered the situation

where the polymer interacts equally with both planes. They were able to determine

the free energy of the polymer and tension on the planes analytically for this model.

Directed path models can be treated combinatorially. The directedness of

these models allows one to determine the generating function using several different

factorization schemes. In the cases of simple models, such as Dyck and Motzkin

paths, most of the results which follow are analytic. Although the configurational

models are simple enough to yield many analytical results, they still have enough

structure to capture the basic physics of the problem. This makes them both useful

and valuable tools.

The simplest of this class of models is Dyck paths. This model is closely related

to the ballot path problem and to the Catalan numbers. Dyck paths are defined

as all paths which start at (0, 0) and are made up of steps in the (1, 1) and (1,−1)

directions with no steps below the line y = 0 and with their final vertex in the line

y = 0. For Dyck paths in a slit of width w there is an additional condition that no

vertex should lie above the line y = w.

A recent paper by Brak et al. (2005) focused on several models related to Dyck

paths

(i) loops - paths which start and end in the bottom surface i.e. Dyck paths,

(ii) bridges - paths which start in the bottom surface and end in the top surface,

(iii) tails - paths which start in the bottom surface and end anywhere within the

slit.

The treatment of each of the three cases is very similar. Although each of them
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Figure 1. An example of a Dyck path with lower and upper vertex surface

weights, a and b respectively.

results in a different generating function, their singularity structure is identical and

so is their thermodynamic limit. This result is not unexpected, as there are the same

number of paths in each of the three cases, to exponential order. A general result

(Hammersley et al. 1982) implies that the end point of the path cannot determine

its thermodynamics. For this reason, we will only consider the case of loops for the

rest of our models since it is combinatorially simpler.

The notation used for all of the models considered here will be similar to that

introduced by Brak et al. (2005). The confining planes will be represented by the

lines y = 0 and y = w for the lower and upper planes, respectively. We shall consider

z to be conjugate to the number of edges, n, in the path. Vertices in the line y = 0

will have an associated weight a, whereas vertices in the line y = w will be weighted

by b.

When they considered the case of Dyck paths, Brak et al. were able to determine

a functional recurrence for the generating functions at various slit widths. The

recurrence considers Dyck paths in a slit of width w, and replaces any vertices in

the line y = w by a zig-zag pattern of width 1. This produces a Dyck path that fits

in a slit of width w + 1. We can write this as:

D1(a, b, z) =
1

1− abz2
(1.2)

Dw+1(a, b, z) = Dw

(
a,

1

1− bz2
, z

)
, w ≥ 1. (1.3)

By iterating Dw(a, b, z) they were able to build up the generating functions

for small values of w and note that they were rational functions. It was found

that the numerators and denominators of Dw(a, b, z) satisfy a recurrence relation

whose solution determines the functional dependence of the generating function on
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w. From this generating function, they were able to extract the asymptotic form

of the free energy for large w and determine the phase diagram for the model.

Furthermore, they obtained expressions for the form of the tension on the surfaces

for large w throughout the interaction space, noting regions of long- and short-

ranged repulsion along with a region of short-ranged attraction. These attractive

and repulsive regions were separated by a curve of zero force which had a simple

analytical form. The authors also consider the case where w → ∞ and its relation

to the half-plane problem. The process involves two limits which do not commute.

In order to recover the half-plane result, one must let w → ∞ before n → ∞ so

that the path never “sees” the upper surface. If one interchanges the order of these

two limits, then even when w → ∞ one finds that the results still depend on both

interaction parameters even though the model has been reduced to a single surface

problem. The directed path models considered in this paper are closely related to

a

b

a a

b

b

a

b

a

Surface vertex weights

Surface edge weights

w

w

b b

Figure 2. Motzkin paths with lower and upper vertex and edge surface weights,

a and b respectively.

the models of Motzkin paths. Motzkin paths are paths on Z2 that start and end in

the line y = 0, have no vertices below this line and have steps in the (1, 0), (1, 1) and

(1,−1) directions. Since we are only considering all such paths up to a translation,

we will only look at paths which start at (0, 0). As with Dyck paths, the models

considered here have a further restriction that all vertices must lie within a slit of
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width w.

2. Motzkin Paths

Motzkin paths are a class of paths closely related to Dyck paths. In addition to the

steps (1,1) and (1,-1), Motzkin paths also include the step (1,0). The inclusion of a

horizontal step allows the path to have every vertex in the surface, and also to have

edges in the surfaces. In the vertex version of the model, the interactions a and b

with the lower and upper surfaces are associated with vertices in the lines y = 0 and

y = w, respectively.

2.1. Vertex Model

For the vertex model we can write the half-plane path generating function as,

M v
w(a, b, z) =

∑
ω∈Ωw

au1(ω)bu2(ω)zn(ω) (2.1)

where Ωw represents the set of all Motzkin paths in a slit of width w, and u1(ω)+1

(ie the first vertex is not weighted) and u2(ω) are the numbers of vertices in the

lines y = 0 and y = w for a path ω, respectively. n(ω) is the number of edges in ω.

a

z
=

→ 1
1− az

→Mv(a, z)

+ z

The case of a path interacting with a single surface can be considered as a

special case of the slit problem. If we let w → ∞ before letting n → ∞ we get

the half-plane problem, which implies that u2(ω) = 0. The factorization of Motzkin

paths (Motzkin 1948, Schröder 1870) in this situation is well known and lends itself

to several interesting factorization methods. Since we are studying loops, the wasp-

waist factorization is particularly useful. If we keep track of the number of steps

that the path takes before it steps out of the bottom surface, we get the following

theorem.
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Theorem 1. The half-plane Motzkin path generating function (2.1) factorizes as

M v(a, z) =
1

1− az

(
1 + az2M v(1, z)M v(a, z)

)
. (2.2)

and hence

M v(a, z) =
2

2− az − a + a
√

1− 2z − 3z2
. (2.3)

Proof. This result is a well known generalisation of the standard Motzkin and Dyck

path factorization (Janse van Rensburg 2000). The set of half-plane Motzkin paths

partitions into two disjoint subsets: 1) The paths have no up step – generated

by (1 − az)−1, or 2) the paths have at least one up step. In the latter case,

following the first down step to y = 0 can be any Motzkin path. Prior to the

first up step can be any number of horizontal step, thus case 2) corresponds to

az2M v(1, z)M v(a, z)/(1− az)

There is a square-root singularity at z1 = 1/3 and a simple pole from the zero

of the denominator, z2(a). For values of a < 3/2, the square-root singularity is

dominant while for a > 3/2, the simple pole is dominant. At a = 3/2, the two

coalesce, identifying the critical point for the model. The dominant singularity

determines the free-energy, κ(a), of the system via:

κ(a) = − log zc(a) (2.4)

where zc(a) represents the dominant singularity of the model.

For paths in a strip of width w, we can obtain the exact expressions for the

partition functions for small values of w. The factorization is very similar to that

used in the half-plane problem, but we impose a height restriction on the paths. The

surface vertex weighted Motzkin path generating function is given by the following

theorem.

Theorem 2. The following statements are equivalent.

(i) M v
w(a, b, z) is the generating function (2.1) for surface vertex weighted Motzkin

paths.

(ii) M v
w(a, b, z) factorizes into the form,

M v
w(a, b, z) =

1

1− az

(
1 + az2M v

w−1(1, b, z)M v
w(a, b, z)

)
. (2.5)
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with initial (width one) generating function,

M v
1 (a, b, z) =

1− bz

1− az − bz
. (2.6)

(iii) M v
w(a, b, z) is a rational function

M v
w(a, b, z) =

P v
w(a, b, z)

Qv
w(a, b, z)

(2.7)

where the polynomials P v
w(a, b, z) and Qv

w(a, b, z) satisfy the same three term

recurrence relation,

Tw+2 = (1− z)Tw+1 − z2Tw, w ≥ 0 (2.8)

( ie replace Tk with P v
k or Qv

k) but with different initial conditions

P v
0 = b, P v

1 = 1− bz, and Qv
0 = a + b− ab(1 + z), Qv

1 = 1− z(a + b)(2.9)

(iv) M v
w(a, b, z) satisfies the equation

M v
w(a, b, z) =

1

1− az − az2M v
w−1(1, b, z)

w ≥ 2. (2.10)

Iterating this gives:

M v
w(a, b, z) =

1

1− az − az2F v
w−1(M

v
1 (1, b, z))

, w ≥ 2 (2.11)

where F v
w(a) satisfies the functional equation

F v
w+1(a) = F v

w

(
1

1− z − az2

)
, w ≥ 2 (2.12)

with initial condition

F v
2 (a) =

1

1− z − az2
(2.13)

and F v
1 (a) =

1− bz

1− z − bz
.

Equation (2.12) is the Motzkin path analogue of the Dyck path functional

equation (1.3). For the proofs of the equivalences we only show one of the directions,

the other following by simple reversal of the argument.

Proof. ii) if i): This result is a simple generalization of Theorem 1. The set of

all surface vertex weighted Motzkin paths paths partitions into the following two

disjoint subsets (note, the zero length path is in the set):

(i) The path has no up step. This set is generated by (1− az)−1.
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(ii) The path has at least one up step. In this case the path following the first

down step to y = 0 can be any Motzkin path of width w. Between the

first up step from y = 0 and the first down step to y = 0 can be any

Motzkin path of width w − 1 but no a weights. This subset is generated by

az2M v
w−1(1, b, z)M v

w(a, b, z)/(1− az).

= +
z z

→ 1
1− az

a

w
w − 1

→Mv
w−1(1, b, z)→Mv

w(a, b, z)

iii) if ii): Solve (2.5) for M v
w(a, b, z),

M v
w(a, b, z) =

1

1− az − az2M v
w−1(1, b, z)

(2.14)

and then substitute (2.7) to give

Pw+1

Qw+1

=
Q̄w

(1− az)Q̄w − az2P̄w

(2.15)

where Q̄w = Qw(1, b, z) and P̄w = Pw(1, b, z). If we divide out any common factors

on the left hand side of the above equation, the numerator and denominator of the

right hand side could still have common factors. If we take these into account these

cancel in the final analysis so we are able to write

Pw+1 = Q̄w and (2.16)

Qw+1 = (1− az)Q̄w − az2P̄w. (2.17)

Putting a = 1, we obtain the recurrence relation

Q̄w+1 = (1− z)Q̄w − z2Q̄w−1 (2.18)

and the same recurrence relation for P̄w because of (2.16), but with different initial

conditions. To get the recurrence relation for Qw take the same linear combination
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as (2.18), but use (2.17) (and (2.16)) to give

−Qw+2 + (1− z)Qw+1 − z2Qw = (1− az)
(
−Q̄w+1 + (1− z)Q̄w − z2Q̄w−1

)
− az2

(
−Q̄w + (1− z)Q̄w−1 − z2Q̄w−2

)
(2.19)

and hence Qw satisfies

Qw+1 = (1− z)Qw − z2Qw−1 (2.20)

and similarly for Pw. The initial conditions (2.9) are then obtained by comparing

(2.15) with M v
1 and M v

2 .

iv) if iii): To get iv) from iii) we need M v
w+1(1, b, z) from (2.14). Thus, put a = 1

in (2.14) to give

M v
w+1(1, b, z) =

1

1− z − z2M v
w(1, b, z)

(2.21)

which is the standard Jacobi continued fraction form (Wall 1948) with the functional

form (2.12) and initial condition (2.13).

The closest singularity to the origin on the real axis determines the behaviour of

the thermodynamic system. Since the partition functions are rational functions, all

singularities will arise from zeros of the denominators. While we can calculate these

zeros explicitly for small values of w, in order to obtain the functional dependence

of the zeros on the width of the slit, we need to solve the recurrence relation. The

general form of Qv
w(a, b, z) can be written as:

Qv
w(a, b, z) = A(a, b, z)λ1(z)w + B(a, b, z)λ2(z)w (2.22)

where λ2(z) ≥ λ1(z) for all z ∈ [0, 1/3]. We can carry out the same procedure for the

polynomials in the numerator and obtain a similar expression for P v
w(a, b, z) which

involves the same λ1(z) and λ2(z) with different coefficients. It is also important to

note that the only w-dependence in the above expression occurs in the exponents of

the two λi(z)’s. Hence we can write

Pw

Qw

=
Cλw

1 + Dλw
2

Aλw
1 + Bλw

2

, (2.23)

where A, B, C and D are polynomials in a, b and z.

The change of variables:

q2 =
λ1(z)

λ2(z)
(2.24)
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can be used to simplify the partition functions and their denominators. The inverse

of this substitution has the rather simple form:

z =
q

1 + q + q2
. (2.25)

With this substitution we can write

Pw

Qw

=
Cq2w + D

Aq2w + B
, (2.26)

and so we get the following theorem.

Theorem 3. The zeros of the denominators of M v
w(a, b, z), that is zeros of

Qv
w(a, b, z), in the q variable, (2.25) are solutions of the degree 2w + 4 equation

q2w =
(aq2 − q2 + aq − q − 1) (bq2 − q2 + bq − q − 1)

(q2 − aq + q − a + 1) (q2 − bq + q − b + 1)
. (2.27)

Similarly the zeros of the numerators of M v
w are given by

q2w+2 =
(bq2 − q2 + bq − q − 1)

(q2 − bq + q − b + 1)
. (2.28)

Note that both of these equations are symmetric in q ↔ 1/q.

2.1.1. Location of singularities Before we can describe the phase diagram of the

model we need to prove some facts about the locations of the singularities of the

generating function and so the zeros of equation (2.27).

Lemma 2.1. For all a, b ≥ 0 and w ≥ 1, the dominant singularity zc lies on the

positive real axis. Then either qc lies on the unit circle or on the positive real line.

Further, if qc = eiθ, then zc = (1 + 2 cos θ)−1 ∈ [1/3,∞), while if 0 ≤ qc < ∞, then

zc ∈ [0, 1/3].

Proof. The generating function, M v
w(a, b, z) is a positive term power series and so

its dominant singularity lies on the positive real axis (Pringsheim’s theorem). Since

zc = qc/(1 + qc + q2
c ), it follows that qc + 1 + 1/qc ∈ R. Substituting q = reiθ we

obtain

reiθ +
1

r
e−iθ + 1 =

(
r − 1

r

)
eiθ +

2

r
cos θ + 1 ∈ R (2.29)

Hence either r = 1 or θ is an integer multiple of π and so qc either lies on the unit

circle or on the non-negative real line (since zc ≥ 0). The result follows.
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Lemma 2.2. The radius of convergence, zc(a, b, w), of M v
w is a monotonic non-

increasing function of a and b. Hence for a fixed w and any a, b ≤ 3/2 it is bounded

above by its value at a, b = 3/2.

Proof. The generating function M v
w is a power series in z with coefficients that

are positive polynomials in a and b. It follows that its radius of convergence is a

monotonic non-increasing function of a and b.

Lemma 2.3. At the point (a, b) = (3/2, 3/2), q = 1 (and so z = 1/3) is a double

pole of M v
w. Further, it is the dominant singularity irrespective of w.

Proof. At a = b = 3/2, equations (2.27) and (2.28) for the denominator and

numerator zeros may be written as (respectively):

(2q + 1)2q2w − (q + 2)2 = 0 (2.30)

(2q + 1)q2w+2 − (q + 2) = 0 (2.31)

We see that q = 1 is a zero of both equations. Differentiating these expressions

repeatedly with respect to q and setting q = 1 shows that q = 1 is a triple zero of

the denominator and a simple zero of the numerator. Hence q = 1 (z = 1/3) is a

double pole of M v
w.

If the singularity at q = 1 is not the dominant singularity, it follows from

Lemma 2.1 that there must be a singularity at 0 ≤ qc < 1. If we substitute this

value into equation(2.27) at a, b = 3/2 we find

q2w
c =

(
qc + 2

2qc + 1

)2

∈ [0, 1) (2.32)

However in the range 0 ≤ x < 1, the function x+2
2x+1

> 1. Hence there is no qc ∈ [0, 1)

and so qc = 1.

Combining the previous two lemmas we obtain

Lemma 2.4. For a, b ≤ 3/2 the dominant singularity qc of M v
w lies on the unit

circle.

We make use of the above lemma in the next section to determine large w

asymptotic expressions for qc and zc. Additionally there is a curve in the plane

along which the dominant singularity is independent of w. This is a line of zero

force in the phase diagram.
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Lemma 2.5. Along the curve (a−1)(b−1)(a+b+1) = 1 (with a ≥ b), the dominant

singularity is independent of w and is given by

qc =
1− a +

√
a2 + 2a− 3

2(a− 1)
and zc =

1− a +
√

a2 + 2a− 3

2a
.

If b > a then similar expressions hold but with b in place of a.

Proof. If qc is a zero of equation (2.27) independent of w then both the denominator

and numerator of the right-hand side must be simultaneously zero; this gives two

equations in a, b and q. Eliminating q from these equations gives the following

equation for a and b:

ab(3− 2a)(3− 2b)((a− 1)(b− 1)(a + b + 1)− 1) = 0. (2.33)

One can exclude the cases a or b = 0 and a or b = 3/2 in much the same manner as

the proof of Lemma 2.3. Along the curve (a − 1)(b − 1)(a + b + 1) = 1 with a > b

there are two w-independent real positive solutions for q:

q =
1− a +

√
a2 + 2a− 3

2(a− 1)
,
a− 1 +

√
a2 + 2a− 3

2
. (2.34)

For a > 3/2 (which corresponds to the section of curve with a > b), the first of these

solutions is smaller. We now need to show that there is no smaller positive solution

of equation (2.27).

Rearrange equation (2.27) to give

q2w(q2 − aq + q − a + 1)(q2 − bq + q − b + 1) =

(aq2 − q2 + aq − q − 1)(bq2 − q2 + bq − q − 1) (2.35)

For q small and positive and a > b on the curve, the right-hand side is positive, while

the left-hand side is negative; there cannot be a real solution until one side changes

sign. The right-hand has its smallest positive zero (in q) at q = 1−a+
√

a2+2a−3
2(a−1)

. This

is precisely the point at which the left-hand side also has its smallest positive zero

(in q). Hence this value of q is the smallest positive solution of (2.27) along the

curve with a > b. The case a < b follows by symmetry. When a = b along the curve

they are equal to 3/2 and so correspond to Lemma 2.3.



Motzkin paths in slits 14

2.1.2. Regions in the (a,b) plane The behaviour of the problem defines several

regions in the (a, b) plane. Within and along the boundaries of these regions, there

are several points where the expression for the dominant singularity of M v
w(a, b, z)

in (2.27) simplifies. For the vertex model of Motzkin paths, these points include

(1, 1), (3/2, 1), (1, 3/2) as well as the points along the curve:

(a− 1)(b− 1)(a + b + 1) = 1 (2.36)

which includes the point (3/2, 3/2). The value ac = 3/2 represents the critical point

in the half-plane problem. Furthermore, because of the (a, b) symmetry in (2.27),

we will only consider the cases where a ≥ b. Behaviour in the other regime can be

obtained by identical arguments and the results are the same up to the interchange

of a and b.

a

b

ac

bc1
0

zero force line

attractive region

repulsive region

Vertex Weight Motzkin: ac = bc = 3/2

Edge Weight Motzkin: ac = bc = 2

1
repulsive

region

Figure 3. Phase and force diagram for the Motzkin edge and vertex model.

We first consider the interior of the square, S, defined by the vertices (s1, s2),

where s1, s2 ∈ {0, 3/2}. The point (1, 1) represents a special point in this region. At

(1, 1) the expression for the zeros of the denominator in (2.27) simplifies to:

q2w =
1

q4
(2.37)

which clearly represent (2w + 4)-th roots of unity. The general solution can be

written as:

qc(1, 1, w) = exp

(
i

2nπ

2w + 4

)
, n = 0...2w + 3. (2.38)
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Under the transformation (2.25), this becomes:

zc(1, 1, w) =
1

1 + 2 cos
(

π
w+2

) (2.39)

where we have used an argument similar to that of Hammersley and Whittington

(1985) to show that κ(w) is a strictly monotone increasing function in w. For our

system this implies that κ(w) < log(3) for all finite w. According to (2.4) this is

equivalent to zc(w) > 1/3, which implies that n 6= 0. Since the closest singularity

to the origin dominates, we conclude that n = 1.

We note that we can explicitly exclude q = 1 (ie z = 1/3) as a pole of M v
w

by showing that q = 1 is a simple zero of both the numerator and denominator of

equation (2.26) (except at the point (a, b) = (3/2, 3/2)). Hence zc is determined by

the next zero of equation (2.27). At (a, b) = (3/2, 3/2) q = 1 is a multiple zero of the

denominator but a simple zero of the numerator and so the dominant singularity is

q = 1 ie zc = 1/3.

At (a, b) = (1, 1), the asymptotic behaviour of the singularity and the free

energy in inverse powers of w are:

zc(1, 1, w) =
1

3
+

π2

9w2
− 4π2

9w3
+ O

(
1

w4

)
(2.40)

κ(1, 1, w) = log(3)− π2

3w2
+

4π2

3w3
+ O

(
1

w4

)
. (2.41)

Since the model is a random walk in (1 + 1) dimensions the length exponent

perpendicular to the preferred direction is 1/2 and the first correction term in

κ(1, 1, w) is proportional to w−2.

We can also look at points away from (1, 1) that are still in the interior of the

square S. For solutions to (2.27) we propose the Ansatz that the critical value of q

takes the form:

qc(a, b, w) = exp

(
i

2π

2w + δ(a, b)

)
×

[
1 +

C1

w
+

C2

w2
+

C3

w3
+

C4

w4
+ O

(
1

w5

)]
. (2.42)

By using this form in (2.27) and expanding in 1/w, we obtain:

δ(a, b) =
2(3a− 4ab + 3b)

(2a− 3)(2b− 3)
, (2.43)
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and

C1 = C2 = C3 = 0 while C4 = C4(a, b) 6= 0. (2.44)

Hence

zc(a, b, w) =

 1

1 + 2 cos
(

2π
2w+δ(a,b)

)
[

1 +
C4(a, b)

w4
+ O

(
1

w5

)]

=
1

3
+

π2

9w2
− 2π2(3a− 4ab + 3b)

9(2a− 3)(2b− 3)w3
+ O

(
1

w4

)
(2.45)

and

κ(a, b, w) = − log [zc(a, b, w)]

= log(3)− π2

3w2
+

2π2(3a− 4ab + 3b)

3(2a− 3)(2b− 3)w3
+ O

(
1

w4

)
. (2.46)

The term in 1/w2 is independent of (a, b) and the first (a, b) dependence occurs in

the w−3 term. Also, the form of δ(a, b) and the asymptotics of zc and κ suggest

that the proposed solution in only valid for the interior of the square S, as it breaks

down for values of a = 3/2 or b = 3/2.

The situation along the boundary of S is more complicated. If we consider

L = {(a, b)|a = 3/2, 0 < b < 3/2}, then even at the point (3/2, 1) the condition in

(2.27) remains sufficiently complicated that we cannot determine the exact solution.

Instead, we write zc(3/2, 1, w) as a power series in 1/w. Clearly the constant term

is 1/3 and we can compute the coefficients of the first few powers of 1/w to obtain:

zc(3/2, 1, w) =
1

3
+

π2

36w2
− 7π2

108w3
+

π2(3π2 + 196)

1728w4
+ O

(
1

w5

)
(2.47)

κ(3/2, 1, w) = log(3)− π2

12w2
+

7π2

36w3
− π2(π2 + 196)

576w4
+ O

(
1

w5

)
. (2.48)

Similarly, we can consider points along L, but away from (3/2, 1). Again, we

can only build up this solution as a series, which gives:

zc(3/2, b, w) =
1

3
+

π2

36w2
+

(4b + 3)π2

108(2b− 3)w3

+
π2 [3π2(2b− 3)2 + 4(4b + 3)2]

1728(2b− 3)2w4
+ O

(
1

w5

)
(2.49)

κ(3/2, b, w) = log(3)− π2

12w2
− (4b + 3)π2

36(2b− 3)w3

− π2 [π2(2b− 3)2 + 4(4b + 3)2]

576(2b− 3)2w4
+ O

(
1

w5

)
(2.50)
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These forms no longer hold at the point (3/2, 3/2); as noted above

zc(3/2, 3/2, w) = 1/3 independent of w.

Outside the square S the behaviour of the system changes completely. Without

essential loss of generality, consider a ≥ b. When w →∞ we expect the free energy

to be the same as that of the half-plane problem. In particular that zc < 1/3 for

a > ac = 3/2. To see this we examine equation (2.27) in the w →∞ limit.

There are 3 possibilities: |q| < 1, |q| > 1 and |q| = 1. Since equation (2.27) is

invariant under q ↔ 1/q, we can restrict our attention to |q| ≤ 1. When |q| = 1, we

may write q = eiθ and so z = 1/(1 + 2 cos θ) ≥ 1/3. If |q| < 1 then when w → ∞,

equation (2.27) reduces to(
aq2 − q2 + aq − q − 1

) (
bq2 − q2 + bq − q − 1

)
= 0. (2.51)

Solving this gives the critical value of q:

qo =
1− a +

√
a2 + 2a− 3

2(a− 1)
. (2.52)

Transforming this result into the z variable, we get:

zo =
1− a +

√
a2 + 2a− 3

2a
. (2.53)

We note that if b > a then we obtain the same result but with b replacing a.

This is the expected result as it represents the value of zc for the adsorption

of a Motzkin path at a single, impenetrable surface. There will also be an identical

solution in the region where b > a with all a’s replaced by b’s. The existence of two

critical values even in the case of w →∞ is a result of the fact that we let n →∞
before letting w →∞.

For finite values of w, note that the left-hand side of (2.27) will include a term

of the form q2w
o . As such, we propose the Ansatz:

qc(a, b) = qo + fq(a, b)q2w
o + O(q3w

o ) (2.54)

where we can determine that:

fq(a, b) =
a(a− 3 +

√
a2 + 2a− 3)(2a + b− ab− b

√
a2 + 2a− 3)

4(a− 1)(a− b)
√

a2 + 2a− 3
. (2.55)

In the z-variable, this result becomes:

zc(a, b, w) = zo + fz(a, b)q2w
o + O

(
q3w
o

)
(2.56)
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where

fz(a, b) =

(
a− 1

a

)
fq(a, b). (2.57)

Of particular interest will be the behaviour of fz(a, b), especially when we consider

the forces on the surfaces. For now, it is sufficient to note that the zeros of fz(a, b)

are given by all the points (a, b) which satisfy (2.36). For these points, the form of

zc(a, b, w) simplifies greatly and is given by the critical value of z for the adsorption

problem, zo. This is consistent with the result of Lemma 2.5.

We note that the form of this solution changes when a = b, as fq(a, b), and

hence fz(a, b) are singular along this line. For this case, equation (2.27) becomes:

qw = ±(aq2 − q2 + aq − q − 1)

(q2 − aq + q − a + 1)
. (2.58)

and when w → ∞ the critical value of q is the same as (2.52). For finite values of

w, the proposed form of qc changes to:

qc(a, a) = qo + gq(a)qw
o + O(q2w

o ) (2.59)

with:

gq(a) = −
a(a− 3 +

√
a2 + 2a− 3)

2(a− 1)
√

a2 + 2a− 3
. (2.60)

Transforming this result to the z variable, we get:

zc(a, a, w) = zo + gz(a)qw
o + O

(
q2w
o

)
(2.61)

where:

gz(a) =

(
a− 1

a

)
gq(a). (2.62)

2.1.3. Forces Given the forms of κ in all of these regimes, we can transform these

expressions into results regarding the forces exerted on the confining surfaces. The

relation between the free energy and this force can be written as:

F(w) =
∂κ(w)

∂w
= −∂log(zc(w))

∂w
= − 1

zc(w)

∂zc(w)

∂w
. (2.63)

Applying this to our results, we start with our analytical result at (1,1). Here,

1/zc = 2 cos [π/(w + 2)] + 1, which gives a force of:

F(w) =
2π

(w + 2)2

sin
(

π
w+2

)
2 cos

(
π

w+2

)
+ 1

=
2π2

3w3
− 4π2

w4
+ O

(
1

w5

)
. (2.64)
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Note that the force is positive for all values of w, implying that the polymer exerts

a repulsive force on the confining surfaces.

At other points, we have asymptotic expressions which will give us the

asymptotic form of the force. When we are considering other values of (a, b) inside

S, we can use the form of zc as in (2.45), which gives:

F(w) =
2π2

3w3
− 2π2(3a− 4ab + 3b)

(2a− 3)(2b− 3)w4
+ O

(
1

w5

)
. (2.65)

This expression is positive for large w and hence the force is repulsive.

Along the boundary of S we first look at the point a = 3/2, b = 1, where zc is

given by(2.47). Using this expression, we get:

F(w) =
π2

6w3
− 7π2

12w4
+ O

(
1

w5

)
, (2.66)

which is positive for large values of w. Also, we note that the coefficient of the

leading term has changed relative to the cases inside S, confirming a change in

behaviour of the problem from S to L.

For other points on L, we can consider the expression for zc(3/2, b, w) in (2.49).

The resulting force is then given by:

F(w) =
π2

6w3
+

(4b + 3)π2

12(2b− 3)w4
+ O

(
1

w5

)
, (2.67)

For points outside the square S, we have two regimes, and hence two more

expressions for zc. For cases where a > 3/2 and a > b, we use the form of zc as in

(2.56) to get:

F(w) = −1

2

fz(a, b)q2w
o log qo

qo + fz(a, b)q2w
o

+ O
(
q3w
o

)
. (2.68)

By its definition, qo is always positive. However for all values of a > 3/2, qo < 1.

This implies that in this regime log qo is negative. Also the denominator of the

expression above is precisely a multiple of our definition of qc as in (2.54) which

is always positive. As such, the nature of the force on the surfaces is determined

by the sign of fz(a, b). Since fz(a, b) is zero along (2.36) it implies that the force

vanishes for all (a, b) along this zero force curve. Indeed, by Lemma 2.5 we know

that the free energy is independent of the width along this curve and so the force

is identically zero. For points below the zero force curve, we find that fz(a, b) > 0,

resulting in a repulsive force between the surfaces. For the region above the curve

in (2.36), we find that fz(a, b) < 0, giving an attractive force.
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If instead we consider the force along the line a = b with a > 3/2, we use (2.61)

for zc to get:

F(w) = −gz(a)qw
o log qo

qo + gz(a)qw
o

+ O
(
q2w
o

)
. (2.69)

The structure of the above equation is the same as the previous case, so that the

nature of the force will again be determined by the sign of gz(a). In this case, it

turns out that gz(a) < 0 for all values of a > 3/2, so that the force between the

surfaces is always attractive along a = b for a > 3/2.

The fact that for the region outside the square S the force contains a term

exponential in qo with qo < 1, implies that the force decays exponentially in this

region. As such, this region in the plane is characterized by short-ranged forces,

whereas the forces inside S and along its boundary are described by algebraic

functions, making them long-ranged.

2.2. Edge Model

The edge and vertex models of Motzkin paths are closely related, as they both

share the same set of steps to make up the paths. However in the edge model, the

weightings a and b for contacts with the lower and upper surfaces are associated

with the edges rather than the vertices of the path. As such, in this case, we can

again define a partition function for the system via:

M e
w(a, b, z) =

∑
ω∈Ω

au1(ω)bu2(ω)zn(ω), (2.70)

where now the ui(ω)’s are the numbers of edges in the appropriate surfaces.

Using the wasp-waist factorization method, we can write down an expression

for w → ∞, which corresponds to the case of adsorption at a single surface if the

limit w →∞ is taken before the limit n →∞. For this case, the expression is:

Theorem 4. The half-plane Motzkin path generating function (2.1) factorizes as

M e(a, z) =
1

1− az

(
1 + z2M e(1, z)M e(a, z)

)
, (2.71)

and hence

M e(a, z) =
2

1− 2az + z +
√

1− 2z − 3z2
. (2.72)
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The proof is very similar to that of Theorem 1 except for the single difference

of a weight a which was associated with the vertex from the first down step which

is not now required because of edge weights.

This expression has two singularities, z1 = 1/3 and z2 = z2(a), where the value

of a for which z1 = z2 is the critical value of the system. In the case of edge Motzkin

paths, ac = 2, and like the vertex version of the problem, this interaction value will

play an important role in determining the behaviour of the system.

Theorem 5. The following statements are equivalent.

(i) M e
w(a, b, z) is the generating function (2.70) for surface edge weighted Motzkin

paths.

(ii) M e
w(a, b, z) factorizes into the

M e
w(a, b, z) =

1

1− az

(
1 + z2M e

w−1(1, b, z)M v
w(a, b, z)

)
. (2.73)

with initial (width one) generating function,

M e
1 (a, b, z) =

1− bz

1− az − bz − z2 + abz2
. (2.74)

(iii) M e
w(a, b, z) is a rational function

M e
w(a, b, z) =

P e
w(a, b, z)

Qe
w(a, b, z)

(2.75)

where the polynomials P e
w(a, b, z) and Qe

w(a, b, z) satisfy the same three term

recurrence relation,

Tw+2 = (1− z)Tw+1 − z2Tw, w ≥ 0 (2.76)

( ie replace Tk with P e
w or Qe

w) but with different initial conditions

P e
0 = 1, P e

1 = 1− bz, and

Qe
0 = 1 + z − az − bz Qe

1 = 1− az − bz − z2 + abz2 (2.77)

(iv) M e
w(a, b, z) satisfies the equation

M e
w(a, b, z) =

1

1− az − z2F e
w−1(M

e
1 (1, b, z))

, w ≥ 2 (2.78)

where F e
w(a) satisfies the functional equation

F e
w+1(a) = F e

w

(
1

1− z − az2

)
, w ≥ 2 (2.79)

with initial conditions

F e
1 (a) =

1

1− z − az2
and F e

0 (a) =
1

1− bz
. (2.80)
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The proof is very similar to that of Theorem 2 and we omit the details.

The procedure for determining the functional dependence of the generating

functions on w follows as in the vertex model. The zeros of the denominators are

given by the following theorem.

Theorem 6. The zeros of the denominators of M e
w(a, b, z), that is the zeros of

Qe
w(a, b, z), in the variable q variable, where z =

q

1 + q + q2
are solutions of the

degree 2w + 4 equation

q2w =
(aq − q − 1)(bq − q − 1)

q2(q − a + 1)(q − b + 1)
. (2.81)

2.2.1. Regions in the (a,b) plane As for the vertex model, we study the behaviour

of the edge model in several regions of the (a, b) plane. The value of ac = 2 for

the adsorption problem will be key in determining these regions. The regions will

include the square S with vertices (0, 0), (0, 2), (2, 0), (2, 2), as well as the non-

zero boundaries of the square and the region outside S. We will also exploit the

symmetry with respect to interchange of a and b in the denominators so that we

will only consider cases where a ≥ b.

For points inside the square S, we first consider the point (1,1). At this point,

the behaviour of the edge model is identical to that of the vertex model and the

result for z(1, 1, w) is the same as (2.39). From this, we can extract the free energy

via (2.4), and the asymptotics of zc(1, 1, w) and κ(1, 1, w) in 1/w will be given by

(2.40) and (2.41), respectively.

At other points inside S but away from (1,1), we propose the same Ansatz as

in (2.42), and find that in the edge version:

δ(a, b) =
2(4− a− b)

(a− 2)(b− 2)
. (2.82)

As for the vertex version, we again find that the first three coefficients of the

correction terms in (2.42) are zero, and the fourth coefficient is a function of (a, b),

although not the same function as in the vertex case. Transforming this result by

(2.25), we find that:

zc(a, b, w) =

 1

1 + 2 cos
(

2π
2w+δ(a,b)

)
[

1 +
C4(a, b)

w4
+ O

(
1

w5

)]

=
1

3
+

π2

9w2
− 2π2(4− a− b)

9(a− 2)(b− 2)w3
+ O

(
1

w4

)
(2.83)
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κ(a, b, w) = − log [zc(a, b, w)]

= log(3)− π2

3w2
+

2π2(4− a− b)

3(a− 2)(b− 2)w3
+ O

(
1

w4

)
. (2.84)

The form of these results again suggests that the behaviour of the system changes

when either a = 2 or b = 2.

We will only consider the case where a = 2 for reasons of symmetry, and again

in this situation we have two subcases. The first is at the point (2,1), where the

condition in (2.81) reduces to:

q2w =
−1

q3
. (2.85)

The solution to this is:

qc(2, 1, w) = exp

(
i

π

2w + 3

)
(2.86)

which transforms to:

zc(2, 1, w) =
1

1 + 2 cos
(

π
2w+3

)
=

1

3
+

π2

36w2
− π2

12w3
+ O

(
1

w4

)
. (2.87)

For points along the line L = {(a, b)|a = 2, 0 < b < 2} away from (2,1), we

utilize the same Ansatz as in (2.42) for the vertex case. In this case we find that:

δ(a, b) =
(b− 4)

(b− 2)
, (2.88)

with the first non-zero correction term coming from the w−4 term. The asymptotic

forms of zc and κ can be calculated as:

zc(2, b, w) =
1

3
+

π2

36w2
− (b− 4)π2

36(b− 2)w3

+
π2 [π2(b− 2)2 + 12(b− 4)2]

576(b− 2)2w4
+ O

(
1

w5

)
(2.89)

κ(2, b, w) = log(3)− π2

12w2
+

(b− 4)π2

12(b− 2)w3

− π2 [π2(b− 2)2 + 36(b− 4)2]

576(b− 2)2w4
+ O

(
1

w5

)
(2.90)

As in the vertex case, this form breaks down for the corner point of S. In this case,

this implies that this form no longer holds at (2,2), which represents a special point

for the system.
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At the point (2,2), we find that the condition in (2.81) simplifies to give:

q2w =
1

q2
. (2.91)

From here, we can find the value of qc and hence zc in the same way that we treated

(1,1). However note that in this case, we no longer have the restriction that n 6= 0.

As such, the closest singularity to the origin in this case occurs when n = 0, which

gives:

qc(2, 2, w) = 1 and, zc(2, 2, w) =
1

3
. (2.92)

We note that the value of zc is independent of w, and we expect that this is a

point on the zero force curve for the system. One may show (in the same way as

Lemma 2.5) that along the curve ab − a − b = 0 that the dominant singularity is

independent of w:

qc =
1

a− 1
and zc =

a− 1

a2 − a + 1
(2.93)

for a > b. When a < b the expressions are the same but with b in place of a.

The analysis of the region outside S follows the procedure considered for the

vertex model, with similar results. In the w →∞ limit, the region where a ≥ b, the

critical value of q is:

qo =
1

a− 1
, (2.94)

which transforms to:

zo =
a− 1

a2 − a + 1
. (2.95)

This expression for zo is precisely the value of zc for the adsorption of edge Motzkin

paths at a single, impenetrable surface.

For the case of finite values of w, we again propose the structures of qc as in

(2.54) and (2.59) for the case where a > b and a = b, respectively. Note that in

these expressions, the value of qo has changed to (2.94), as have the expressions for

fq(a, b) and gq(a, b). For the edge versions, these functions are now:

fq(a, b) =
a(a− 2)(a + b− ab)

(a− b)(a− 1)4
and, (2.96)

gq(a, b) = −a(a− 2)

(a− 1)4
. (2.97)

In each case, the relationship between qc variables and the transformed zc variables

remains the same as in (2.56) and (2.61), respectively. Note that fq(a, b) and gq(a, b)

transform to fz(a, b) and gz(a, b) according to (2.57) and (2.62), respectively.
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2.2.2. Forces As with the vertex version of Motzkin paths, the force on the surfaces

in the edge version of Motzkin paths follows directly from (2.63) and the appropriate

expression for zc. The results are that:

• when a = b = 1, the result is identical to that of the vertex version of Motzkin

paths, and the force is given in (2.64);

• when we consider points inside S, but away from (1,1), we find that

F(w) =
2π2

3w3
+

2π2(a + b− 4)

(a− 2)(b− 2)w4
+ O

(
1

w5

)
; (2.98)

• when a = 2 and b = 1, we can use the analytical form of zc as in (2.87) to get

F(w) =
π2

6w3
− 3π2

4w4
+ O

(
1

w5

)
; (2.99)

• for points along L away from (2,1) we use our series for zc from (2.89) and find

F(w) =
π2

6w3
− π2(b− 4)

4(b− 2)w4
+ O

(
1

w5

)
; (2.100)

For the region outside the square S, the arguments for obtaining the force on

the surfaces are identical for both the edge and vertex versions of Motzkin paths.

Although the quantitative nature of the force changes since both fz(a, b) and gz(a, b)

are different in the two models, the qualitative features of the force are the same.

In the case of edge Motzkin paths, the zero force curve is the collection of points

satisfying:

(a− 1)(b− 1) = 1 or equivalently ab− a− b = 0, (2.101)

which includes the point (2,2).

Regions outside S and below this curve are characterized by a short-range

repulsive force, whereas regions above this curve are associated with a short-range

attractive force. The nature of this attractive force is different along the line a = b

than elsewhere in the plane.

2.3. Comparisons between Dyck and Motzkin path models

The factorization scheme which we used to derive the generating functions for both

the vertex and edge versions of Motzkin paths in slits can be adapted for the vertex

version of Dyck paths. This gives an alternative to the method used in (Brak

et al. 2005) to derive the generating functions for Dyck paths.
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The behaviour of the edge model for Motzkin paths is very closely related to

the behaviour of Dyck paths. In both cases, we can find analytical expressions for

zc, κ and the force at (1,1), (ac,1) and (ac, ac), where ac is the critical value of the

interaction for the half-plane adsorption problem. For both of these models, ac=2.

The zero force curve in each case is given by the points (a, b) satisfying ab−a−b = 0.

The generating functions for Motzkin paths in a slit can be derived directly

from the corresponding Dyck path generating function. The idea is to replace every

vertex in a Dyck path by either a vertex or sequence of horizontal edges, giving a

set of Motzkin paths. We give the argument for the vertex model of Motzkin paths.

The argument for the edge version is similar, and we not give the details. It will be

convenient to associate a weight c with the zeroth vertex of a Dyck path. We write

Dw(a, b, c, z) for the generating function of Dyck paths in a slit of width w where a

is conjugate to the number of vertices (other than the zeroth vertex) in y = 0, b is

conjugate to the number of vertices in y = w and z is conjugate to n, the number

of edges. Suppose that Fw(a, b, c, f) is the corresponding generating function where

f is conjugate to the number of vertices with 0 < y < w, and the other symbols

retain their previous meaning. Dw and Fw are related by

Fw(a, b, c, f) = Dw(a/f, b/f, c, f). (2.102)

Next we construct Motzkin paths by replacing each vertex of a Dyck path by a

vertex or a sequence of horizontal edges. We set the weight of the zeroth vertex

to be unity. If Gv
w(a, b, f) is the corresponding generating function for the vertex

model of Motzkin paths then Gv
w and Fw are related by

Gv
w(a, b, f) = Fw

(
a

1− a
,

b

1− b
,

1

1− a
,

f

1− f

)
. (2.103)

Finally we switch back to counting edges instead of vertices with 0 < y < w to

obtain

M v
w(a, b, z) = Gv

w(az, bz, z). (2.104)

Although this gives an alternate scheme for deriving the generating functions for

the Motzkin path models the analysis given in the previous sections is still necessary.

This approach does not provide a convenient mapping whereby the analysis for Dyck

paths immediately gives results for Motzkin paths.
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2.4. Paths and Pavings and Three Term Recurrences

The appearance of three-term recurrence relations such as (2.8) and (2.75) in

the context of paths-in-a-slit generating functions is a well known occurrence.

Combinatorially they traditionally arise from two related sources. However, the

recurrences obtained in this paper and in (Brak et al. 2005) represent a third origin.

In this section we briefly explain how they differ from the former two.

The first traditional origin is the heap formulation of the Cartier-Fota

commutation monoid (Cartier & Foata 1969) due to Viennot (Viennot 1986).

Here the Motzkin paths are in bijection with heaps of monomers and dimers

(Viennot 1986, Bousquet-Mélou & Rechnitzer 2002). An example of the bijection

is illustrated in Figure 4. The path defines a sequence of monomers and dimers.

The sequence is defined by reading the path from left to right and each time the

right end of a “matching” pair of steps (shown as a line with a “box” on the end) is

passed a monomer [h] or dimer [h, h + 1] is added to the sequence, where h is the y

coordinate of the left vertex of the path step. The sequence is then used to create

a heap: the monomer [x] (resp. dimer [x, x + 1]) is lowered “from above” onto the

heap at horizontal position x.

[0,1]

[1,2]
[2,3]

[3,4] [3,4]

[0]

[4] [4] [4]

[0,1]
1 2 3 40

[0]

[2]

[2] [3,4]
[4]

[0,1]
[4]
[4]
[3,4]

[2,3]
[1,2]

[0,1]

[0,1][0] [2] [3,4][4] [4][4] [3,4][2,3][1,2] [0,1][1]Monomer/dimer sequence=

[1]

[1]

0
1
2
3
4

Figure 4. An example of the bijection from a Motzkin path in a strip of width

four to a heap of width four.

The generating function for such heaps can, by using the heap inversion lemma,

be written as a rational function. The numerator and denominator polynomials of

the rational generating function generate classes of “trivial” heaps of monomers and
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dimers. Combinatorially such trivial heaps correspond to pavings of the line segment

[0, w] by monomers and dimers – see Figure 5 for an example. The generating

function Hw(z) for pavings by monomers and dimers on the line segment [0, w] is

readily shown to satisfy a three term recurrence,

Hk+1(y) = (y − ck)Hk(y)− λkHk−1(y), (2.105)

with H0(y) = 1 and H1(y) = y−c0. A monomer on vertex k has weight −ck, a dimer

on edge k has weight −λk and an isolated vertex (ie not covered by a monomer or

dimer) has weight y. An example is shown in Figure 5. For the edge weight Motzkin

1 32 4 5 6 7 8 9 100

y −c1 −c2 −c5−λ4 −λ7 −λ9
y

Weight = c1c2c5λ4λ7λ9 y2

Figure 5. An example of a weighted paving of the line segment [0, 10] by

monomers and dimers.

path problem considered in this paper one needs to have λk = 1 for all k, c0 = a,

cw = b and ck = 1 otherwise. The path generating function is then given by

M e
w(a, b, z) =

Hw−1(1, b, 1/z)

zHw(a, b, 1/z)
. (2.106)

The reason for the replacement of y by 1/z and the extra factor of z in the

denominator is that for the path generating function we want the monomers and

dimers to carry a weight of z with the isolated vertices having weight one. This is

achieved by replacing Hk(y) by zkHk(1/z).

The second route to a three term recurrence is to write the Motzkin path

generating function as

M e
w(z) =

cofactor1,1(1− zTw)

det (1− zTw)
(2.107)

where Tw is the width w transfer matrix for Motzkin paths – an example of a general

weighted path is shown in Figure 6. Equation (2.107) may be formally derived by

noting that ((Tw)n)h,h′ generates paths of length n (starting at height h − 1 and

ending at height h′ − 1) and thus M e
w(z) =

∑
n(Tw)nzn = (1− zTw)−1. The inverse

matrix (1− zTw)−1 is then given by equation (2.107).

The determinant (and co-factor) which depend on the width of the slit satisfy

a three term recurrence in w. This is the same recurrence, up to a minor
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variable change, as that obtained from the pavings, namely (2.105). In particular

det (1− zTw) = zwHw(1/z). Note however, that the recurrence relations obtained

from pavings, or equivalently from the determinant, are not the same as those

obtained in this paper. This is seen if (2.105) is compared with say (2.76) where

the a and b weights occur explicitly as the coefficients in (2.105), whilst for (2.76)

there are no a or b weights in any coefficients as all the weights occur in the initial

condition (2.77).

w

λ1

λ2

λ3

λ4

c0

c1

c2

c4

λ1

c4 c4
λ4

T4 =





c0 1 0 0
λ1 c1 1 0
0 λ2 c2 1
0 0 λ3 c3





Figure 6. An example of general weight Motzkin path in a slit of width four and

the corresponding transfer matrix.

To simplify the remaining discussion we shall only consider the denominator

polynomials Qw(z) given by recurrence (2.76) and the determinant polynomials

Dw(z) = det (1− zTw) = zwHw(1/z), where Hw satisfies (2.105). The denominator

of the path generating function, M e
w(z), is given by Dw(z) if one uses the determinant

or paving methods or Qe
w(z) if one uses (2.76). Note however that the prior

polynomials Dk, for k < w, are not the same as Qe
k, for k < w and that they

only coincide for k = w. Algebraically it is clear that as the recurrence (2.105) is

iterated, generating the sequence H1, H2, H3, . . . the b weight is not “picked up”

until k = w. In contrast the b weight is in all the Qe
k, for all k < w polynomials.

Combinatorially this can be understood as follows. The sequence of generating

functions P e
k/Qe

k for k < w, unlike the corresponding ratio arising from the

determinant/paving polynomials, (2.106), all correspond to Motzkin path generating

functions (with upper and lower weight a and b), but in slits of width k < w. Thus

the three-term recurrence for Qe
k is connecting generating functions, all of which

correspond to Motzkin path generating functions (with upper and lower weight a

and b). The ratios arising from the paving polynomial sequence do not give the a

and b weight path generating until k = w.



Motzkin paths in slits 30

3. Discussion

We have found several equations satisfied by the generating function for Motzkin

paths in a slit, with either edge weights or vertex weights associated with the lines

defining the upper and lower boundaries of the slit. From these we have determined

the phase diagram (ie the locus of singularities in the free energy) and force diagram

for each model. The free energies and forces have been calculated exactly at several

points in the (a, b)-plane and asymptotically (for large strip widths) elsewhere. The

edge and vertex models have different critical values for the interaction parameters

but the qualitative form of the phase diagram is the same. There is a zero force line

in the phase diagram, determined by (a − 1)(b − 1)(a + b + 1) = 1 for the vertex

model and (a− 1)(b− 1) = 1 for the edge model, which is the same as for the Dyck

path model (Brak et al. 2005).

The approach that we used to compute the path generating functions is

a generalisation of the canonical factorization method. This yields three term

recurrence relations, and hence sequences of orthogonal polynomials, which differ

from those which are obtained by a bijection to heaps of dimers and monomers or

by transfer matrix methods. Ratios of these polynomials give a sequence of the path

generating functions for all slit widths unlike the heap or transfer matrix methods.
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