
PERMUTATIONS GENERATED BY A DEPTH 2 AND INFINITE
STACK IN SERIES ARE ALGEBRAIC

MURRAY ELDER, GEOFFREY LEE, AND ANDREW RECHNITZER

Abstract. We prove that the class of permutations generated by passing an ordered
sequence 12 . . . n through a stack of depth 2 and an infinite stack in series is in bijec-
tion with an unambiguous context-free language, where a permutation of length n is
encoded by a string of length 3n. It follows that the sequence counting the number of
permutations of each length has an algebraic generating function. We use the explicit
context-free language to compute the generating function:

∑
n≥0

cnt
n =

(1 + q)
(

1 + 5q − q2 − q3 − (1− q)
√

(1− q2)(1− 4q − q2)
)

8q

where cn is the number of permutations of length n that can be generated, and q ≡
q(t) = 1−2t−

√
1−4t

2t is a simple variant of the Catalan generating function. This in turn

implies that c
1/n
n → 2 + 2

√
5.

1. Introduction

Let p = p1p2 . . . pn and q = q1q2 . . . qk be permutations of length n ≥ k. We say p
avoids q if there are no k indices i1 < · · · < ik so that for all s, t,

pis < pit if and only if qs < qt.

For example, 25413 avoids 123 since it has no increasing subsequence of length 3.
Interest in sets of permutations that avoid a small set of “patterns” arose naturally in

the study of stack-sorting (or equivalently stack-generating) algorithms. Knuth showed
that a permutation p can be generated by passing the ordered sequence 12 . . . |p| through
an infinite stack if and only if p avoids 312, and that permutations of length n avoiding
312 are counted by the Catalan numbers [15].

Despite considerable effort, exact enumerative results about permutations passed through
more than a single stack are still rare. The number of permutations sortable by 2 stacks
in parallel was only recently solved by Albert and Bousquet-Mélou [3]. The full problem
of two stacks in series remains unsolved, but a simplified version was studied by West [17]
and solved by Zeilberger [19]. The problem we consider here is an attempt to “sneak up”
on the full 2 stacks in series problem — we focus on the class of permutations gener-
ated by a stack of depth two and an infinite stack in series. We prove that the class is
enumerated by a sequence that has an algebraic generating function.

If q is a list of permutations, let Avn(q) be the set of permutations of length n that
avoid q for each q ∈ q. We call Av(q) =

⋃∞
n=0Avn(q) a pattern-avoidance class. A basis

for a pattern avoidance class Av(q) is a set p of pairwise avoiding permutations so that
Av(p) = Av(q). A class is finitely based if it is equal to Av(p) for p finite. The first author

Date: July 15, 2014.
2010 Mathematics Subject Classification. 05A05.
Key words and phrases. Pattern avoiding permutation, algebraic generating function, context-free

language.
1

proved that the class of permutations generated by a stack of depth two and an infinite
stack in series has a finite basis consisting of 20 permutations [11].

The list of pattern-avoidance classes for which a generating function for the sequence
counting Avn(q) has been computed, or shown to be rational, algebraic or non-algebraic, is
limited. Classes avoiding a single pattern of length 3 are enumerated by the Catalan num-
bers [15, 16] and so have an algebraic generating function. For length four, Av({1342})
has an algebraic generating function [7], Av({1234}) has a generating function that is
D-finite but not algebraic [13], and a closed form generating function for Av({1324}) has
not be found [2, 9]. It is known that for any pattern p of length four, Av({p}) is in
bijection with one of these three classes. For single patterns of length greater than four,
and classes avoiding two or more patterns, various isolated results are known [4, 18].

Several authors have considered the language-theoretic complexity of pattern avoidance
classes — see for example [1, 5, 6, 10]. Atkinson, Livesey, and Tulley [6] showed that
the set of permutations generated by passing an ordered sequence through a finite token-
passing network is in bijection with a regular language. Initially we applied this technique
to the finite network consisting of a stack of depth 2 followed by a stack on depth k
in series, constructing a sequence of languages and corresponding rational generating
functions for small values of k. As k increased, the rational generating functions appeared
to converge to the algebraic function given in Theorem 4.1 below. However, his method
does not constitute a proof. To prove the result we instead follow another path — we
establish a bijection between permutations generated and an unambiguous context-free
language. The generating function is then guarenteed to be algebraic by a well known
theorem of Chomsky and Schützenberger.

Of course there are a great many other variants of stack sorting that might be considered
and we refer the reader to [8] for a survey.

2. Establishing a bijection

Let P be the set of permutations that can be generated by a stack of depth 2 and
infinite stack in series, and fix ρ, λ, µ as the stack moves indicated in Figure 1.

AB

ρ
123 . . . nλµ

Figure 1. Token passing moves ρ, λ and µ for two stacks in series.

Definition 2.1 (Da,b(u)). If u is a word over an alphabet that includes the letters a and
b, define Da,b(u) to be the number of a letters minus the number of b letters contained in
u.

Definition 2.2 (Lk,∞). Let k ∈ N. The language Lk,∞ is the set of words w ∈ {ρ, λ, µ}∗
satisfying

(1) Dρ,λ(u) ∈ [0, k] and Dλ,µ(u) ∈ [0,∞) for all prefixes, u, of w,
2

(2) Dρ,λ(w) = Dλ,µ(w) = 0.

Lemma 2.3. A word w ∈ {ρ, λ, µ}∗ encodes a permutation in P if and only if w ∈ L2,∞.
Moreover, a word of length 3n in L2,∞ encodes a permutation of length n.

Proof. The first claim is clear from the definition. If w ∈ L2,∞ has n ρ letters, then
Dρ,λ(w) = 0 implies w has n λ letters, and Dλ,µ(w) = 0 then implies w has n µ letters,
so the length of w is 3n. �

The language L2,∞ consists of all possible ways to pass tokens through the system of
stacks as in Figure 1. We wish to find a sublanguage that is in bijection with P . From
the set of all words in L2,∞ that generate the same permutation, we will try to choose
the string that outputs tokens as soon as possible, that is, has more µ letters closer to
the front. The next definition will help to formalise this.

Definition 2.4 (µ-ordering). Define an ordering, ≺µ, on words in {ρ, λ, µ}∗ as follows.
Let θ : {ρ, λ, µ}∗ → {ν, µ}∗ be a monoid homomorphism defined by θ(µ) = µ and θ(ρ) =
θ(λ) = ν. If u 6= v as strings then u ≺µ v if |u| = |v| and θ(u) precedes θ(v) in lexographic
ordering on {µ, ν}∗ where µ < ν.

For example, if u = ρλµρλµ and v = ρλρµλµ then u ≺µ v. Note that both words
generate the permutation 12, and u is obtained from v by replacing the subword ρµ by
µρ, which has no affect on the permutation being produced. More generally we have the
following.

Lemma 2.5. Let w ∈ L2,∞.

(1) If w = w0ρµw1 then w′ = w0µρw1 generates the same permutation as w, and
w′ ≺µ w.

(2) If w = w0ρλw1λµw2 with Dρ,λ(w0) = 1 and w1 ∈ L1,∞, then w′ = w0λρw1µλw2

generates the same permutation as w, and w′ ≺µ w.
(3) If w = w0λρw1λµw2 with Dρ,λ(w0) = 1 and w1 ∈ L1,∞, then w′ = w0ρλw1µλw2

generates the same permutation as w, and w′ ≺µ w.

Proof. In each case it is clear that w′ ≺µ w. We must show that in each case the two
strings generate the same permutation. For case (1) this is clear since ρ and µ do not
interact.

For case (2), since Dρ,λ(w0) = 1, there must be one token (say a) left in the first stack
after reading w0, and since the next letter to be read is ρ, there must be one token (say
b) ready to enter the first stack. See Figure 2.

After reading ρλ, b moves to the top of stack B and a stays in stack A. Reading w1

leaves a and b in place and outputs some permutation of input tokens after b. Finally λµ
outputs a, leaving b on the top of stack B and stack A empty.

Starting from the initial configuration in Figure 2, the prefix w0λρw1µλ of w′ moves a
to the top of stack B and places b in stack A. The permutation generated by w1 is then
passed across as before, then a is output, and finally b is moved to stack B, leaving the
stacks in the same configuration and the prefix of w.

A similar argument applies for Case (3) and is left to the reader. �

Definition 2.6 (L). The language L is the set of words w ∈ L2,∞ that do not

(1) contain ρµ,
(2) have a prefix w0ρλw1λµ with w1 ∈ L1,∞ and Dρ,λ(w0) = 1,
(3) have a prefix w0λρw1λµ with w1 ∈ L1,∞ and Dρ,λ(w0) = 1.

Lemma 2.7. Let w ∈ L2,∞. If either
3

After w0:

AB

a

b - - - -- - - -

After w0ρλ:

AB

a

- - - -- - - -

b

After w0ρλw1λµ:

AB

- - - -- - - - a

b

Figure 2. Stack configurations in the proof of Lemma 2.5.

(1) w = w0ρλw1λw2µw3 with Dρ,λ(w0) = 1, w1 ∈ L1,∞, and w2 ∈ L2,∞ generates a
permutation that avoids 312, or

(2) w = w0λρw1λw2µw3 with Dρ,λ(w0) = 1, w1 ∈ L1,∞, and w2 ∈ L2,∞ generates a
permutation that avoids 312,

then w 6∈ L.

Proof. Suppose for contradiction that w ∈ L, w = w0vw1λw2µw3 with v ∈ {ρλ, λρ}, Dρ,λ(w0) =
1, w1 ∈ L1,∞, w2 generates a permutation that avoids 312, and moreover that w0 is
the longest prefix of w with this property. That is, if w = u0vu1λu2µw3 with v ∈
{ρλ, λρ}, Dρ,λ(u0) = 1, u1 ∈ L1,∞ and u2 generates a permutation that avoids 312, then
|u0| ≤ |w0|.

Since Dρ,λ(w0vw1) = 1 and λ moves a token from stack A to stack B, after reading
w0vw1λ we have no tokens in stack A, and some token, say a, in stack B. See Figure 3.

Since w ∈ L, w2 cannot be empty, and since w2 is a subword of w ∈ L we have w2 ∈ L.
So w2 moves some sequence of tokens completely through the stacks, leaving a in place.

4

After w0vλ:

AB

a

b - - - -- - - -

After w0vλρb:

AB

a

b

- - - -- - - -

After w0vλρbsλb
if Dλ,µ(s) > 0:

AB

a

c
b

- - - -- - - -

Figure 3. Stack configurations in the proof of Lemma 2.7.

The first letter of w2 must be ρ, which moves some token, say b, onto stack A. Let
ρb, λb, µb be the letters in w2 that correspond to moving b through the stacks. Then w2

has prefix ρbsλbtµb where s, t are subwords.
Since stack A contains b while s is read, if ρ occurs in s it must be immediately followed

by λ, so Dρ,λ(u) ∈ [0, 1] for all prefixes u of s, and Dρ,λ(s) = 0. Further, if Dλ,µ(u) < 0 for
any prefix u of s, then a would be output. Either Dλ,µ(s) = 0 (and s ∈ L) or Dλ,µ(s) > 0.

If s ∈ L1,∞ then t ∈ L2,∞ and generates a permutation avoiding 312 since it is a
subword of w2. In this case w has prefix w = w0vw1λρbsλbtµb with Dλ,µ(w0vw1) = 1
and t generating a permutation avoiding 312, which contradicts the choice of w0 as the
longest such prefix.

Therefore we must have Dλ,µ(s) > 0. In this case, after reading s at least one token,
say c, remains on top of a in stack B when b is moved into it. After reading λb, the stack
configuration is as in the third diagram shown in Figure 3.

5

Note that a < b < c since they are input in this order. If t 6= ε then it must contain at
least one µ (it cannot leave a token covering b, and cannot just be ρ or ρρ) so it moves a
token d > c to the output. This means w2 generates the subpermutation dbc which is order
equivalent to 312, contradicting our assumption. Thus t = ε and w2 has prefix ρbsλbµb,
with s ∈ {ρλ, µ}∗. Either s ends with ρλ, or s = uρλs′ where Dλ,µ(u) = Dλ,µ(s) since
Dλ,µ starts at zero and increases to this value. Thus s′ ∈ L, and w = w0vw1λρbuρλs

′λbµb
with Dρ,λ(w0vw1λρbu) = 1, which contradicts w ∈ L. �

Theorem 2.8. There is a bijection between permutations in P of length n and words in
L of length 3n.

Proof. Consider the map that sends a word of length 3n in L ⊆ L2,∞ to the permutation
of length n it generates. If σ ∈ P then there is some word w ∈ L2,∞ that generates it
by Lemma 2.3. If w /∈ L, then w must either contain ρµ, or have prefix w0ρλw1λµ or
w0λρw1λµ with Dρ,λ(w0) = 1 and w1 ∈ L1,∞. We rewrite w as follows.

While w contains ρµ or has prefix w0ρλw1λµ or w0λρw1λµ:

1. Replace ρµ with µρ
2. Replace w0ρλw1λµ with w0λρw1µλ
3. Replace w0λρw1λµ with w0ρλw1µλ

Each iteration replaces the current word by a word which generates the same permutation
and is shorter in the µ-ordering by Lemma 2.5, so the procedure must terminate (there are
finitely many words less than w in the µ-ordering). It follows that the map is surjective.
We complete the proof by showing it is injective.

Suppose we have two words u, v ∈ L that generate the same permutation, and that
u 6= v as strings. Write

u = u1u2 . . . un and v = v1v2 . . . vn

where ui, vi ∈ {ρ, λ, µ}.
Since u, v ∈ L we have u1 = v1 = ρ. Let k ∈ [2, n] be such that ui = vi for i < k and

uk 6= vk. Let z = u1 . . . uk−1 = v1 . . . vk−1, so

u = zuk . . . un and v = zvk . . . vn.

First consider the case that one of uk, vk is µ. Without loss of generality assume
u = zµuk+1 . . . un. Then z must leave some token, say a, at the top of stack B, and
uk = µ outputs this token.

If vk = λ, then a will be covered and v will not be able to generate the same permu-
tation. So we must have vk = ρ. Then vk+1 6= µ. If vk+1 = λ then a is covered. So
vk+1 = ρ. Then vk+2 6= µ, if vk+2 = λ then a is covered, and v + k + 2 6= ρ since stack
A contains two tokens. So we have a contradiction, and it follows that neither uk, vk can
be µ.

Without loss of generality assume uk = ρ and vk = λ. Then z must leave at least one
token in stack A to be followed by λ, and at most one token to be followed by ρ. Let a
be the token in A, and b the token moved from the input by uk = ρ. See Figure 4. Note
that we have Dρ,λ(z) = 1.

In u, zρ must be followed by λ since stack A is full after the ρ and ρ cannot be followed
by a µ. So u has prefix zρλ and we have the configuration shown in the second diagram
in Figure 4.

In v, zλ can be followed by either µ or ρ but not λ since stack A is empty after vk = λ.
Suppose vk+1 = µ. Then after reading zλµ we have the configuration shown in the third
diagram in Figure 4. Since u and v are assumed to produce the same permutation, the

6

After z:

AB

a

b - - - -- - - -

After zρλ:

AB

- - - - -- - - - -

a

b

After zλµ:

AB

b - - -- - - a

Figure 4. Stack configurations in Theorem 2.8 where uk = ρ and vk = λ.

next µ letter appearing in u after the prefix zρλ must move a to the output. Let λa, µa be
the letters in u that move the token a. Then u = zρλu1λau2µ where u1, u2 ∈ {ρ, λ}∗. The
subword u2 cannot move tokens to cover a in stack B, so cannot contain any λ letters, and
cannot contain any ρ letters since it is followed by µ, so it must be empty. The subword
u1 must be of the form (ρλ)i for i ≥ 0, since it cannot move a. Then u = z(ρλ)iρλλaµa
with Dρ,λ(z(ρλ)i) = 1, so u 6∈ L.

It follows that vk+1 = ρ, so we have

u = zρλ . . . un, v = zλρ . . . vn.

The two configurations of the stacks after reading the length k + 1 prefixes of u and v
respectively are shown in Figure 5.

We now consider two possibilities: either a precedes b in the permutation generated by
u and v, or b precedes a.

7

u v

B A B A

- - - - - - - - - - - - - - - -

b

a

a

b

Figure 5. Stack configurations after zρλ and zλρ in Theorem 2.8.

Case 1: a precedes b
Mark the letters ρ, λ, µ in u and v that correspond to moving the token a, by appending

the subscript a. So we have u = zρλw1λaw2µa . . . un and v = zλaρwµa . . . vn where
w,w1, w2 ∈ {ρ, λ, µ}∗.

First consider the word v. Since b must remain in stack A until a is output, w cannot
end with ρ and w cannot leave any tokens covering a in stack B, we have w ∈ L1,∞. If w
is empty then v contains ρµa which means v 6∈ L. Thus w is nonempty, so moves some
tokens, say t1, . . . , ts, from the input to the output.

Since u generates the same permutation as v, it must also move the tokens t1, . . . , ts
through the stacks and output them before a is output. The subword w1 cannot leave
any tokens covering a in stack A, so w1 ∈ {ρλ, µ}∗.

If w1 leaves some tokens in stack B, then these tokens must come after ts in the input,
and so w1 must feed all the tokens t1, . . . , ts into the input, so w2 cannot output any
tokens, so cannot contain µ, and cannot contain λ since a would be covered in stack B,
and cannot be ρ or ρρ since it is followed by µa, so w2 is empty. If w1 ends with ρλ,
then write w1 = pρλ, and zρλw1λaµa = zρλpρλλaµa with Dρ,λ(zρλp) = 1, so u 6∈ L.
Otherwise w1 ends in µ. Since w1 has more (ρλ) subwords than µ letters (it leaves tokens
in stack B) then w1 has some suffix y ∈ L1,∞ and prefix p such that z = pρλy. So we
have zρλw1λaµa = zρλpρλyλaµa with Dρ,λ(zρλp) = 1 and y ∈ L1,∞ so u 6∈ L.

Thus w1 does not leave any tokens in stack B, so w1 ∈ L1,∞. Let t1, . . . tr with r ≤ s
be the tokens moved to the output by w1. The situtation is shown in Figure 6.

AB

tr+1 · · · ts - -- - - - -

a
b

Figure 6. Stack configuration after zρλw1λa in Case 1 in Theorem 2.8.

8

If w2 is empty then u has prefix zρλw1λaµa with w1 ∈ L1,∞ which is forbidden, so w2

must move some tokens. The subword w2 cannot leave any tokens in stack B. Either w2

leaves some tokens in stack A, or not.
If w2 leaves a token in stack A, this token cannot be one of tr+1, . . . , ts or else v would

generate a different permutation to u. Therefore this token is moved into stack A after
tr by a letter ρ. This letter cannot be followed by µ, and since it remains in stack A it is
not followed by λ. So this letter is either the last letter of w2, or is followed by another
ρ, which must also remain in stack A. Thus w2 ends with ρ, but this is a contradiction
since w2 is followed by µa.

Thus w2 does not leave any tokens in stacks A or B, so moves tr+1, . . . , ts from the
input to the output, and w2 ∈ L2,∞. Note that w1w2 produces the same permutation of
t1, . . . , ts as w does, and w ∈ L1,∞ so generates a 312 avoiding permutation of t1, . . . , ts.
The subword w1 permutes the first r tokens, and so w2 must produce a permutation of
tr+1, . . . , ts that avoids 312. In this case u has prefix zρλw1λaw2µa where Dρ,λ(zρλ) = 1,
w1 ∈ L1,∞ and w2 generates a 312-avoider, so by Lemma 2.7 u must also contain a prefix
that is not allowed if u ∈ L. This is a contradiction, so this case does not apply.

Case 2: b precedes a
We return to the situation shown in Figure 5 with u = zρλ . . . un and v = zλρ . . . vn.

Mark the letters ρ, λ, µ in u and v that correspond to moving the token b, by appending
a subscript. Then u = zρbλbwµb . . . un and v = zλρbw1λbw2µb . . . vn where w,w1, w2 ∈
{ρ, λ, µ}∗.

First consider the word u. Since a must remain in stack A until b is output, w cannot
end with ρ and w cannot leave any tokens covering b in stack B, we have w ∈ L1,∞. If w
is empty then u contains ρµb which is forbidden, so w moves some tokens, say t1, . . . , ts,
from the input to the output.

Since v generates the same permutation as u, it must also move the tokens t1, . . . , ts
through the stacks and output them before b is output. The subword w1 cannot leave
any tokens covering b in stack A, so w1 ∈ {ρλ, µ}∗.

If w1 leaves some tokens in stack B, then these tokens must appear after ts in the
input, and so w1 must feed the tokens t1, . . . , ts into the input, so w2 is empty (it cannot
contain µ, λ and cannot end in ρ). If w1 ends with ρλ, then write w1 = pρλ, and
zλρbw1λbµb = zλρbpρλλbµb with Dρ,λ(zλρbp) = 1, so v 6∈ L. Otherwise w1 ends in µ.
Since w1 has more (ρλ) subwords than µ letters (it leaves tokens in stack B) then w1

has some suffix y ∈ L1,∞ with z = pρλy. So we have zλρbw1λbµb = zλρbpρλyλbµb with
Dρ,λ(zλρbp) = 1 and y ∈ L1,∞ so v 6∈ L.

Thus w1 does not leave any tokens in stack B, so w1 ∈ L1,∞. Let t1, . . . tr with r ≤ s
be the tokens moved to the output by w1. The situtation is shown in Figure 7.

If w2 is empty then v has prefix zλρw1λbµb with w1 ∈ L1,∞ which is forbidden, so w2

must move some tokens. The subword w2 cannot leave any tokens in stack B. Either w2

leaves some tokens in stack A, or not.
If w2 leaves a token in stack A, this token cannot be one of tr+1, . . . , ts or else v would

generate a different permutation to u. Therefore this token is moved into stack A after
tr by a letter ρ. This letter cannot be followed by µ, and since it remains in stack A it is
not followed by λ. So this letter is either the last letter of w2, or is followed by another
ρ, which must also remain in stack A. Thus w2 ends with ρ, but this is a contradiction
since w2 is followed by µb.

Thus w2 does not leave any tokens in stacks A or B, so moves tr+1, . . . , ts from the
input to the output, and w2 ∈ L2,∞. Note that w1w2 produces the same permutation of

9

AB

tr+1 t2 · · · ts - -- - - - -

b
a

Figure 7. Stack configuration after zλρbw1λb in Case 2 in Theorem 2.8.

t1, . . . , ts as w does, and w ∈ L1,∞ so generates a 312 avoiding permutation of t1, . . . , ts.
The subword w1 permutes the first r tokens, and so w2 must produce a permutation of
tr+1, . . . , ts that avoids 312. In this case v has prefix zλρbw1λbw2µb where Dρ,λ(zλρb) = 1,
w1 ∈ L1,∞ and w2 generates a 312-avoider, so by Lemma 2.7 v must also contain a prefix
that is not allowed if v ∈ L. This is a contradiction, so we cannot have two such words
u and v. �

2.1. A related class of permutations. A natural question to ask is whether switching
the order of the stacks makes any difference to the problem. Let Q be the set of permu-
tations that can be generated by passing an ordered sequence through an infinite stack
followed by a depth 2 stack in series. Each word w ∈ L2,∞ encodes a permutation in Q
as follows: reading w from right to left, for each µ move a token from the input to the
infinite stack, for each λ move a token from the infinite stack to the depth 2 stack, and
for each ρ move a token from the depth 2 stack to the output. It follows that P and Q
are in bijection.

3. Constructing a pushdown automaton

In this section we construct a deterministic pushdown automaton accepting on empty
stack, which accepts the language

L$ = {w$ | w ∈ L}.
A pushdown automaton accepting on empty stack M is the following:

(1) Q a finite set of states,
(2) Σ a finite input alphabet,
(3) Γ a finite stack alphabet,
(4) q0 ∈ Q the start state,
(5) 0 ∈ Γ a special stack symbol,
(6) a map δ from Q× (Σ ∪ ε)× Γ to finite subsets of Q× (Γ∗),

which runs as follows. Before reading input, the stack contains a single 0. Input strings are
accepted as soon as the stack becomes empty. A configuration of M is a pair (q, ω) where
q is the current state and ω ∈ Γ∗ is a string of stack symbols representing the contents
of the stack (the first letter of ω is the top of the stack). The notation δ(qi, a, k) =
{(qj1 , γ1), . . . , (qjs , γs)} means that if M has the configuration (qi, kω) and a ∈ Σ ∪ {ε}
is the next input letter to be read, then M can move to the configuration (qjl , γlω) for
some 1 ≤ l ≤ s, removing the token k from the top of the stack and replacing it by γl.

See [14] for more details.
10

A pushdown automaton is deterministic if for each state q and stack symbol i

(1) if |δ(q, ε, i)| = 1 then |δ(q, a, i)| = 0 for all a ∈ Σ,
(2) for each a ∈ Σ ∪ {ε} the set δ(q, a, i) has size at most one.

Note that a determistic pushdown automaton accepting on empty stack cannot accept
the empty string (unless this is the only string it accepts) since there would have to be a
transition δ(q0, ε, 0) as well as a transition δ(q0, a, 0) for some letter a.

Let M be the pushdown automaton shown in Figure 8, which accepts on empty stack.

q0start q1 q2

q3 q4 q5

q7

q6

q8

$, 0→ ε
µ, 1→ ε
µ, 2→ ε

ρ, i→ i ρ, i→ i

λ, i→ 1i λ, i→ 1i

ρ, i→ i

λ, i→ 1i

ρ, i→ i

λ, i→ 1i µ, 1→ ε

µ, 1→ ε
µ, 2→ ε

µ, 1→ ε

λ, i→ 2iρ, i→ i

µ, 2→ ε

λ, i→ 1i ρ, i→ i ρ, i→ i

Figure 8. Pushdown automaton M accepting on empty stack, with start
configuration (q0, 0). The symbol i ∈ {0, 1, 2} represents a stack token that
is kept in place by a transition.

The pushdown automaton uses its stack to keep track of Dλ,µ as it reads its input, and
its states to keep track of Dρ,λ. It uses the stack symbol 2 as a device to flag when the
input has the potential to have a prefix of the form w0ρλ or w0λρ with Dρ,λ(w0) = 1.
Paths ρµ are forbidden. We will prove that the language of this automaton is precisely
the language L.

11

Here is the formal description of M . Note that states q3, q6, q7 are reached only when
1 is on top of the stack, and q5, q8 are reached when either 1 or 2 are on top of the stack,
so we have omitted transitions from configurations that are not possible.

(1) states Q = {q0, . . . , q8},
(2) input alphabet Σ = {ρ, λ, µ, $},
(3) stack alphabet Γ = {0, 1, 2},
(4) start state q0,
(5) transition function δ defined as follows.

δ(q0, $, 0) = (q0, ε)
δ(q0, µ, 1) = (q0, ε)
δ(q0, µ, 2) = (q0, ε)
δ(q3, µ, 1) = (q0, ε)
δ(q4, µ, 1) = (q4, ε)
δ(q4, µ, 2) = (q4, ε)
δ(q5, µ, 1) = (q4, ε)
δ(q5, µ, 2) = (q5, ε)

δ(q0, ρ, 0) = (q1, 0)
δ(q0, ρ, 1) = (q1, 1)
δ(q0, ρ, 2) = (q1, 2)
δ(q1, ρ, 0) = (q2, 0)
δ(q1, ρ, 1) = (q2, 1)
δ(q1, ρ, 2) = (q2, 2)
δ(q3, ρ, 1) = (q6, 1)
δ(q4, ρ, 0) = (q2, 0)
δ(q4, ρ, 1) = (q2, 1)
δ(q4, ρ, 2) = (q2, 2)
δ(q5, ρ, 1) = (q8, 1)
δ(q5, ρ, 2) = (q8, 2)
δ(q6, ρ, 1) = (q8, 1)
δ(q7, ρ, 1) = (q6, 1)

δ(q1, λ, 0) = (q3, 10)
δ(q1, λ, 1) = (q3, 11)
δ(q1, λ, 2) = (q3, 12)
δ(q2, λ, 0) = (q5, 10)
δ(q2, λ, 1) = (q5, 11)
δ(q2, λ, 2) = (q5, 12)
δ(q4, λ, 0) = (q3, 10)
δ(q4, λ, 1) = (q3, 11)
δ(q4, λ, 2) = (q3, 12)
δ(q5, λ, 1) = (q7, 11)
δ(q5, λ, 2) = (q7, 12)
δ(q6, λ, 1) = (q7, 11)
δ(q8, λ, 1) = (q5, 21)
δ(q8, λ, 2) = (q5, 22)

To prove thatM accepts precisely the language L, we first show thatM is deterministic.
This allows us to identify input words with unique paths in M and simplify our arguments
slightly.

Lemma 3.1. The pushdown automaton M is deterministic.

Proof. The claim is easily verified by considering the formal description for M . �

Proposition 3.2. The pushdown automaton M accepts the language L$ = {w$ | w ∈ L}.

Proof. Since M is deterministic, we identify input words with their corresponding unique
path in M .

Let w ∈ {ρ, λ, µ}∗. We must show that

(1) if w contains ρµ, then w$ is rejected.
(2) if w fails to be in L2,∞, then w$ is rejected,
(3) if w has a bad prefix (conditions (2) and (3) in Definition 2.6), then w$ rejected.
(4) if w$ is rejected, then w 6∈ L.

The only states that can be reached by a path uρ for u ∈ {ρ, λ, µ}∗ from the start
configuration are q1, q2, q6 and q8 and since none are the source of a µ transition, any
word containing ρµ will be rejected.

Next, we show that if w is not in L2,∞, then w$ is rejected by M . Each state represents
the endpoint of a path labeling a prefix of an input string accepted by the automaton.
One can verify the values of Dρ,λ(u) for each path labeled u ending at state qi given by
Table 1.

Let h(u) be the height of the stack after reading u ∈ {ρ, λ, µ}∗ starting from the start
configuration (q0, 0). Then h(ε) = 1, h(uρ) = h(u), h(uλ) = h(u)+1 and h(uµ) = h(u)−1
since λ pushes a token to the stack, µ pops a token and ρ keeps the stack unchanged. It
follows that h(u) = Dλ,µ(u) + 1, and since 0 stays on the stack until $ is read, h(u) ≥ 1

12

state Dρ,λ

q0 0
q1 1
q2 2
q3 0
q4 1
q5 1
q6 1
q7 0
q8 2

Table 1. Value of Dρ,λ for any prefix ending at each state.

for all prefixes u ∈ {ρ, λ, µ}∗, so Dλ,µ(u) ≥ 0. If w$ is accepted then the stack must
contain only 0 after reading w, so Dλ,µ(w) = 0.

It follows that if Dρ,λ > 2, Dρ,λ, Dλ,µ(u) < 0 for some prefix u, or Dλ,µ(w) 6= 0, then M
will reject w$.

Next, suppose w ∈ L2,∞ has no ρµ substring and a prefix of the form w0vw1λµ where
Dρ,λ(w0) = 1, v ∈ {ρλ, λρ} and w1 ∈ L1,∞. The string w0 labels a path in the automaton
starting at q0 and ending at state q1, q4, q5 or q6 by Table 1. From each of these states,
reading v = ρλ ends in state q5, and reading v = λρ ends in state q6.

From q5, the word w1 labels a path that visits only states q5 and q8, since Dλ,µ(z) ≥ 0
for all prefixes z of w1, so the 1 on top of the stack before reading w1 remains (and is
covered by 2s, which are removed by the µ loop at q5), and ends at q5 since Dλ,µ(w1) = 0.
From here reading λµ is rejected.

From q6, if w1 = ε then uλρλµ is rejected. Otherwise w1 labels a path from q6 to q8
and then moves between q5 and q8, and ends at q5. From here reading λµ is rejected.

We have now established that if w 6∈ L then w$ is rejected by M . To complete the
proof we must show that if w$ is rejected, then w 6∈ L. To show this, assume w ∈ L2,∞
with no ρµ substring, but w$ is rejected by M . We will prove that w must have a bad
prefix.

Let p be the longest prefix of w$ labeling a path that is not rejected by M . Since
w ∈ L2,∞ we have Dλ,µ(w) = 0, so if w = p, after reading w the stack contains just 0 so
w$ will be accepted, a contradiction. Thus p is strictly shorter than w. Let w = pxw′

where x ∈ {ρλ, µ} is the next letter input after reading p.
We now consider the possible states where p can end.

(1) Suppose p ends at q0. Then Dρ,λ(p) = 0 so x 6= λ. If the top of stack is 0 then
Dλ,µ(p) = 0 so x 6= µ. Otherwise M cannot reject on reading ρ, µ.

(2) Suppose p ends at q1, so its last letter is ρ, and Dρ,λ(p) = 1. Then x 6= µ.
Otherwise M cannot reject on reading ρ, λ.

(3) Suppose p ends at q2, so its last letter is ρ, and Dρ,λ(p) = 2. Then x 6= µ, ρ.
Otherwise M cannot reject on reading λ.

(4) Suppose p ends at q3, so Dρ,λ(p) = 0 and the top of stack is 1. Then x 6= λ.
Otherwise M cannot reject on reading ρ, (µ, 1→ ε).

(5) Suppose p ends at q4, so Dρ,λ(p) = 1. The only way M could reject is if the top
of stack is 0 and x = µ, which is not possible since w ∈ L2,∞.

13

(6) Suppose p ends at q5, so Dρ,λ(p) = 1 and 1 is on top of the stack. Then no letter
will cause M to reject.

(7) Suppose p ends at q6, so Dρ,λ(p) = 1 and p ends with λρ. Then x cannot be µ,
and otherwise px is not rejected.

(8) Suppose p ends at q8, so its last letter is ρ, and Dρ,λ(p) = 2. Then x 6= µ, ρ and
M cannot reject if x = λ.

These cases show that if p ends at any state except q7, then M does not reject w on
reading the next input letter. We finish the proof by showing that if p ends at q7, then
px is a bad prefix.

Since p ends at q7, p ends with λ, Dρ,λ(p) = 2, and Dλ,µ(p) > 0. If x = ρ then px is
not rejected. If x = λ then w 6∈ L2,∞. So we must have x = µ.

Let p = p1λ. If p1 ends at q6, then p1 = p2λρ, and px = p2λρλµ where Dρ,λ(p2) = 1
and so px is a bad prefix. The machine correctly rejects the string on reading x = µ.

Otherwise p1 ends at q5. Either p1 ends with ρλ, or µ. If p1 = p2ρλ then Dρ,λ(p2) = 1
and px = p2ρλλµ is a bad prefix. Otherwise p1 ends in µ, and must pop a token 2 from
the stack. Let λ∗ be the last λ letter in p1 that pushed a 1 on top of the stack (which
must exist, since all paths to q5 must cross such an edge). Write p1 = p2λ∗p3µ.

The letter λ∗ labels one of the following four edges:

(1) from q2 to q5,
(2) from q1 to q3,
(3) from q4 to q3,
(4) from q5 to q7,
(5) from q6 to q7.

In the first case, p2 ends at q2 so must have the form p2 = uρ with Dρ,λ(u) = 1.
Then p3µ labels a path that moves between states q5 and q8, reading ρλ and pushing a
2, or reading µ and popping a 2, so p3µ ∈ L1,∞. It follows that w has the bad prefix
uρλ∗(p3µ)λµ, and so M correctly rejects it.

In the other four cases we have that Dρ,λ(p2) = 1 since p2 ends at state q1, q4, q5 or q6,
λ∗ must be immediately followed by a letter ρ, and p2λ∗ρ ends at state q6. Let p3 = ρp4.
Then p4µ labels a path that starts at q6, goes to q8, then moves between states q5 and
q8, reading ρλ and pushing a 2, or reading µ and popping a 2. So p4µ ∈ L1,∞. It follows
that w has the bad prefix p2λ∗ρ(p4µ)λµ, and so M correctly rejects it. �

4. Obtaining the generating function

Theorem 4.1. The sequence counting the number of permutations of each length in P
has an algebraic generating function:

∑
n≥0

cnz
n =

(1 + q)
(

1 + 5q − q2 − q3 − (1− q)
√

(1− q2)(1− 4q − q2)
)

8q

where cn is the number of permutations in P of length n, and q ≡ q(z) = 1−2z−
√
1−4z

2z
.

Proof. We convert the pushdown automaton given in the previous section to an unam-
biguous context-free language, following the standard procedure as described in Hopcroft
and Ullman [14]. Theorem 10.12 of Hopcroft and Ullman guarantees that the grammar
obtained from a deterministic pushdown automaton accepting on empty stack is LR(0)
and hence unambiguous.

14

We then apply the Chomsky and Schützenberger theorem, as outlined for example in
[12] I.5.4, to obtain an algebraic generating function. Since each step in this procedure
is constructive, we can find the generating function explicitly.

We start by converting the pushdown automaton to a grammar. See Theorem 5.4 [14]
for full details.

Define a grammar with nonterminals S and [qi, j, qk] = Ni,j,k for each pair of states
qi, qk and stack symbol j. The nonterminal [qi, j, qk] represents a path in the configuration
space of the pushdown automaton starting at qi with j on top of the stack and ending
at some state qk. The productions “fill out” these paths with subpaths according to the
transitions that are possible.

The production rules are then defined as follows:

(1) for each state qi we have a production S → N00i,
(2) for each transition δ(qi, a, j) = {(qk, ε)} with a ∈ {$, µ}, add a production Nijk =

a,
(3) for each transition δ(qi, ρ, j) = {(qk, l)}, add productions Nijx = ρNklx for 0 ≤

x ≤ 8,
(4) for each transition δ(qi, λ, j) = {(qk, lm)}, add productions Nijx = λNklyNymx

0 ≤ x, y ≤ 8.

This gives the following set of productions, where 0 ≤ x, y ≤ 8:

N000 → $
N010 → µ
N020 → µ
N310 → µ
N414 → µ
N424 → µ
N514 → µ
N525 → µ

N00x → ρN10x

N01x → ρN11x

N02x → ρN12x

N10x → ρN20x

N11x → ρN21x

N12x → ρN22x

N31x → ρN61x

N40x → ρN20x

N41x → ρN21x

N42x → ρN22x

N51x → ρN81x

N52x → ρN82x

N61x → ρN81x

N71x → ρN61x

N10x → λN31yNy0x

N11x → λN31yNy1x

N12x → λN31yNy2x

N20x → λN51yNy0x

N21x → λN51yNy1x

N22x → λN51yNy2x

N40x → λN31yNy0x

N41x → λN31yNy1x

N42x → λN31yNy2x

N51x → λN71yNy1x

N52x → λN71yNy2x

N61x → λN71yNy1x

N81x → λN52yNy1x

N82x → λN52yNy2x

We can reduce the size of the grammar description as follows. First, observe that the
only productions that eliminate nonterminals (by generating $ or µ) are of the form N∗jk
for k ∈ {0, 4, 5}, and j = 0 implies k = 0. Since all productions with nonterminals
on the right side have the form N∗ij → ρN∗ij or N∗ij → λN∗∗∗N∗ij, it follows that any
nonterminal N∗∗k with k not equal to 0, 4 or 5 cannot be eliminated, so we can exclude
them from the grammar.

Also, if we start a derivation with S → N00k for k 6= 0, there will always be a nonter-
minal of the form N∗0k that cannot be eliminated. Therefore it suffices to make N000 the
start nonterminal and remove all productions involving S.

Lastly, the resulting grammar contain nonterminals N500, N504, N505 that will never
produce a string of only terminals, since the configuration (q5, 0) is never realised (to
reach q5 the top of stack symbol is either 1 or 2. We modify the above grammar one step
further by removing any production involving these nonterminals .

Taking these factors into consideration, and collecting productions with the same left
side together we obtain the following grammar:

15

N000 → $ | ρN100,
N004 → ρN104,
N005 → ρN105,
N010 → µ | ρN110,
N014 → ρN114,
N015 → ρN115,
N020 → µ | ρN120,
N024 → ρN124,
N025 → ρN125,
N100 → ρN200 | λN310N000 | λN314N400,
N104 → ρN204 | λN310N004 | λN314N404,
N105 → ρN205 | λN310N005 | λN314N405,
N110 → ρN210 | λN310N010 | λN314N410 | λN315N510,
N114 → ρN214 | λN310N014 | λN314N414 | λN315N514,
N115 → ρN215 | λN310N015 | λN314N415 | λN315N515,
N120 → ρN220 | λN310N020 | λN314N420 | λN315N520,
N124 → ρN224 | λN310N024 | λN314N424 | λN315N524,
N125 → ρN225 | λN310N025 | λN314N425 | λN315N525,
N200 → λN510N000 | λN514N400,
N204 → λN510N004 | λN514N404,
N205 → λN510N005 | λN514N405,
N210 → λN510N010 | λN514N410 | λN515N510,
N214 → λN510N014 | λN514N414 | λN515N514,
N215 → λN510N015 | λN514N415 | λN515N515,
N220 → λN510N020 | λN514N420 | λN515N520,
N224 → λN510N024 | λN514N424 | λN515N524,
N225 → λN510N025 | λN514N425 | λN515N525,
N310 → µ | ρN610,
N314 → ρN614,
N315 → ρN615,
N400 → ρN200 | λN310N000 | λN314N400,
N404 → ρN204 | λN310N004 | λN314N404,
N405 → ρN205 | λN310N005 | λN314N405,
N410 → ρN210 | λN310N010 | λN314N410 | λN315N510,
N414 → µ | ρN214 | λN310N014 | λN314N414 | λN315N514,
N415 → ρN215 | λN310N015 | λN314N415 | λN315N515,
N420 → ρN220 | λN310N020 | λN314N420 | λN315N520,
N424 → µ | ρN224 | λN310N024 | λN314N424 | λN315N524,
N425 → ρN225 | λN310N025 | λN314N425 | λN315N525,
N510 → ρN810 | λN710N010 | λN714N410 | λN715N510,
N514 → µ | ρN814 | λN710N014 | λN714N414 | λN715N514,
N515 → ρN815 | λN710N015 | λN714N415 | λN715N515,
N520 → ρN820 | λN710N020 | λN714N420 | λN715N520,
N524 → ρN824 | λN710N024 | λN714N424 | λN715N524,
N525 → µ | ρN825 | λN710N025 | λN714N425 | λN715N525,

16

N610 → ρN810 | λN710N010 | λN714N410 | λN715N510,
N614 → ρN814 | λN710N014 | λN714N414 | λN715N514,
N615 → ρN815 | λN710N015 | λN714N415 | λN715N515,
N710 → ρN610,
N714 → ρN614,
N715 → ρN615,
N810 → λN520N010 | λN524N410 | λN525N510,
N814 → λN520N014 | λN524N414 | λN525N514,
N815 → λN520N015 | λN524N415 | λN525N515,
N820 → λN520N020 | λN524N420 | λN525N520,
N824 → λN520N024 | λN524N424 | λN525N524,
N825 → λN520N025 | λN524N425 | λN525N525.

The next step is to convert nonterminals to generating functions, terminals to z and
productions to equations, as described in [12] I.5.4.

f000 = z + zf100,
f004 = zf104,
f005 = zf105,
f010 = z + zf110,
f014 = zf114,
f015 = zf115,
f020 = z + zf120,
f024 = zf124,
f025 = zf125,
f100 = zf200 + zf310f000 + zf314f400,
f104 = zf204 + zf310f004 + zf314f404,
f105 = zf205 + zf310f005 + zf314f405,
f110 = zf210 + zf310f010 + zf314f410 + zf315f510,
f114 = zf214 + zf310f014 + zf314f414 + zf315f514,
f115 = zf215 + zf310f015 + zf314f415 + zf315f515,
f120 = zf220 + zf310f020 + zf314f420 + zf315f520,
f124 = zf224 + zf310f024 + zf314f424 + zf315f524,
f125 = zf225 + zf310f025 + zf314f425 + zf315f525,

f200 = zf510f000 + zf514f400,
f204 = zf510f004 + zf514f404,
f205 = zf510f005 + zf514f405,
f210 = zf510f010 + zf514f410 + zf515f510,
f214 = zf510f014 + zf514f414 + zf515f514,
f215 = zf510f015 + zf514f415 + zf515f515,
f220 = zf510f020 + zf514f420 + zf515f520,
f224 = zf510f024 + zf514f424 + zf515f524,
f225 = zf510f025 + zf514f425 + zf515f525,

f310 = z + zf610,
f314 = zf614,
f315 = zf615,

17

f400 = zf200 + zf310f000 + zf314f400,
f404 = zf204 + zf310f004 + zf314f404,
f405 = zf205 + zf310f005 + zf314f405,
f410 = zf210 + zf310f010 + zf314f410 + zf315f510,
f414 = z + zf214 + zf310f014 + zf314f414 + zf315f514,
f415 = zf215 + zf310f015 + zf314f415 + zf315f515,
f420 = zf220 + zf310f020 + zf314f420 + zf315f520,
f424 = z + zf224 + zf310f024 + zf314f424 + zf315f524,
f425 = zf225 + zf310f025 + zf314f425 + zf315f525,
f510 = zf810 + zf710f010 + zf714f410 + zf715f510,
f514 = z + zf814 + zf710f014 + zf714f414 + zf715f514,
f515 = zf815 + zf710f015 + zf714f415 + zf715f515,
f520 = zf820 + zf710f020 + zf714f420 + zf715f520,
f524 = zf824 + zf710f024 + zf714f424 + zf715f524,
f525 = z + zf825 + zf710f025 + zf714f425 + zf715f525,
f610 = zf810 + zf710f010 + zf714f410 + zf715f510,
f614 = zf814 + zf710f014 + zf714f414 + zf715f514,
f615 = zf815 + zf710f015 + zf714f415 + zf715f515,
f710 = zf610,
f714 = zf614,
f715 = zf615,
f810 = zf520f010 + zf524f410 + zf525f510,
f814 = zf520f014 + zf524f414 + zf525f514,
f815 = zf520f015 + zf524f415 + zf525f515,
f820 = zf520f020 + zf524f420 + zf525f520,
f824 = zf520f024 + zf524f424 + zf525f524,
f825 = zf520f025 + zf524f425 + zf525f525.

Using Maple (version 14) we can solve to obtain an expression for the algebraic gen-
erating function f000(z), which counts the number of words in L$ of each length. Since
words in L$ of length 3n + 1 are in bijection with permutations in P of length n, the
generating function

∑
n≥0 cnt

n where cn is the number of permutations of length n in P
is obtained by dividing f000 by z and substituting z3 = t. �

From the expression for the generating function we can easily obtain the first few terms
of the sequence:

1 + z+ 2z2 + 6z3 + 24z4 + 114z5 + 592z6 + 3216z7 + 17904z8 + 101198z9 + 578208z10 +
3332136z11 + 19343408z12 +

We can also use standard analytic combinatorial methods[12] to deduce the asymptotic
growth of the number of such permutations:

cn ∼
√

25− 11
√

5

2
√
πn3

· (2 + 2
√

5)n ·
(
1 +O(n−1)

)
.

5. Acknowledgements

The bulk of this paper is the result of a Univeristy of Newcastle summer vacation
project undertaken by the second author under supervision of the first.

Research was supported by the Australian Research Council (ARC) grant FT110100178,
and the Natural Sciences and Engineering Research Council of Canada (NSERC).

18

References

[1] M. H. Albert, M. D. Atkinson, and N. Ruškuc. Regular closed sets of permutations. Theoret. Comput.
Sci., 306(1-3):85–100, 2003.

[2] M. H. Albert, M. Elder, A. Rechnitzer, P. Westcott, and M. Zabrocki. On the Stanley-Wilf limit of
4231-avoiding permutations and a conjecture of Arratia. Adv. in Appl. Math., 36(2):96–105, 2006.

[3] Michael Albert and Mireille Bousquet-Mélou. Sorting with two stacks in parallel. DMTCS Proceed-
ings, (01):585–596, 2014.

[4] Michael H. Albert, M. D. Atkinson, and Vincent Vatter. Counting 1324, 4231-avoiding permutations.
Electron. J. Combin., 16(1):Research Paper 136, 9, 2009.

[5] Michael H. Albert, Steve Linton, and Nik Ruškuc. The insertion encoding of permutations. Electron.
J. Combin., 12:Research Paper 47, 31, 2005.

[6] M. D. Atkinson, M. J. Livesey, and D. Tulley. Permutations generated by token passing in graphs.
Theoret. Comput. Sci., 178(1-2):103–118, 1997.

[7] Miklós Bóna. Exact enumeration of 1342-avoiding permutations: a close link with labeled trees and
planar maps. J. Combin. Theory Ser. A, 80(2):257–272, 1997.

[8] Miklós Bóna. A survey of stack-sorting disciplines. Electron. J. Combin, 9(2):A1, 2003.
[9] A. R. Conway and A. J. Guttmann. On the growth rate of 1324-avoiding permutations, 2014. ArXiv:

1405.6802.
[10] M. Elder. Pattern avoiding permutations are context-sensitive, 2004. ArXiv: math/0412019.
[11] Murray Elder. Permutations generated by a stack of depth 2 and an infinite stack in series. Electron.

J. Combin., 13(1):Research Paper 68, 12 pp. (electronic), 2006.
[12] Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. Cambridge University Press, Cam-

bridge, 2009.
[13] Ira M. Gessel. Symmetric functions and P-recursiveness. J. Combin. Theory Ser. A, 53(2):257–285,

1990.
[14] John E. Hopcroft and Jeffrey D. Ullman. Introduction to automata theory, languages, and compu-

tation. Addison-Wesley Publishing Co., Reading, Mass., 1979. Addison-Wesley Series in Computer
Science.

[15] Donald E. Knuth. The art of computer programming. Volume 3. Addison-Wesley Publishing Co.,
Reading, Mass.-London-Don Mills, Ont., 1973. Sorting and searching, Addison-Wesley Series in
Computer Science and Information Processing.

[16] Rodica Simion and Frank W. Schmidt. Restricted permutations. European J. Combin., 6(4):383–406,
1985.

[17] Julian West. Sorting twice through a stack. Theoretical Computer Science, 117(1):303–313, 1993.
[18] Wikipedia. Enumerations of specific permutation classes — Wikipedia, the free encyclopedia, 2014.

Accessed 5 July 2014.
[19] Doron Zeilberger. A proof of Julian West’s conjecture that the number of two-stacksortable permu-

tations of length n is 2(3n)!/((n + 1)!(2n + 1)!). Discrete Mathematics, 102(1):85–93, 1992.

School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan
NSW 2308, Australia

E-mail address: murray.elder@newcastle.edu.au
E-mail address: geoffrey.a.lee@uon.edu.au

Department of Mathematics, University of British Columbia, Vancouver, British Columbia,
V6T-1Z2, Canada

E-mail address: andrewr@math.ubc.ca

19

	1. Introduction
	2. Establishing a bijection
	2.1. A related class of permutations

	3. Constructing a pushdown automaton
	4. Obtaining the generating function
	5. Acknowledgements
	References

