MATH 303 – Stochastic Processes – midterm 1

February 2022

1. 10 marks Let X_n be a Markov chain on $S = \{0, 1, 2, 3\}$ with transition matrix

$$P = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0\\ 0 & \frac{2}{3} & \frac{1}{3} & 0\\ 0 & 0 & \frac{3}{4} & \frac{1}{4}\\ 1 & 0 & 0 & 0 \end{pmatrix}$$

- (a) Find the 2-step transition matrix of X_n
- (b) What is the stationary distribution?
- (c) If $X_0 = 0$ what is the expected number of steps before $X_n = 3$?

Solution: (a) This is $P^2 = \begin{pmatrix} \frac{1}{2} & \frac{7}{12} & \frac{1}{6} & 0 \\ 0 & \frac{4}{9} & \frac{17}{36} & \frac{1}{12} \\ 0 & 0 & \frac{9}{16} & \frac{3}{16} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \end{pmatrix}$ (b) Solve $\pi = \pi P$ and $\sum \pi_i = 1$ to find $\pi = \frac{1}{10}(2, 3, 4, 1)$. (c) Let m_i be the mean from state *i*. Then $m_0 = 1 + \frac{1}{2}m_0 + \frac{1}{2}m_1 \qquad m_1 = 1 + \frac{2}{3}m_1 + \frac{1}{3}m_2 \qquad m_2 = 1 + \frac{3}{4}m_2 + \frac{1}{4}m_3$. Solve these to find $m_0 = 9$.

2. 10 marks Consider a Markov chain on $S = \{0, 1, 2, ...\}$ with transition probabilities

$$P_{n,n+1} = p$$
 $P_{n,0} = 1 - p$

for some fixed p.

- (a) Is this chain irreducible?
- (b) Is this chain reversible?
- (c) Is state 0 periodic or aperiodic? If periodic, what is the period?
- (d) Suppose $X_0 = 0$, and let T be the return time: the minimal n > 0 with $X_n = 0$. Find the probability mass function for T.

Solution:

- (a) Yes. From 0 it is possible to get to n in n steps, and back in one step.
- (b) No. For example $P_{02} = 0$ but $P_{20}! = 0$ so there is no π which solved detailed balance.
- (c) Aperiodic since $P_{00} > 0$.
- (d) The chain returns at time *n* if the first *n* steps are exactly $0 \to 1 \to 2 \to \cdots \to (n-1) \to n$. This has probability $P_{01}P_{02} \dots P_{n-2,n-1}P_{n,0} = p^{n-1}(1-p)$.
- 3. 10 marks Consider a branching process where the offspring distribution for the number of chidren of an individual is $\mathbb{P}(\xi = n) = \frac{1}{3} \left(\frac{2}{3}\right)^n$ for $n = 0, 1, \ldots$
 - (a) Find the probability generating function for ξ .
 - (b) Find the probability that the process becomes extinct.

Solution:

- (a) $G(s) = \mathbb{E}s^X = \sum \frac{1}{3} \left(\frac{2}{3}\right)^n s^n = \frac{1}{3} \frac{1}{1-2s/3}.$
- (b) This is the smallest solution to s = G(s). The solutions are 1 and 1/2, so the answer is 1/2.
- 4. 10 marks Consider a Markov chain with states $\{a, b, c, d, e, f, g\}$ and transition matrix

	a	b	c	d	e	f	g
a	$\sqrt{0}$	$\frac{1}{2}$	0	$\frac{1}{2}$	0	0	0
b	$\frac{1}{3}$	$\frac{1}{3}$	0	$\frac{1}{3}$	0	0	0
c	0	0	1	0	0	0	0
d	$\frac{1}{2}$	0	$\frac{1}{3}$	0	$\frac{1}{6}$	0	0
e	0	0	0	0	0	1	0
f	0	0	0	0	$\frac{2}{3}$	0	$\frac{1}{3}$
g	$\langle 0 \rangle$	0	0	0	0	1	0/

- (a) Draw the transition diagram, including the probability for each transition.
- (b) Find the communicating classes.
- (c) For each class, determine whether it is recurrent or transient, and whether it is periodic.

Solution: See figure. Classes are

- {a, b, d}: transient aperiodic.
 {c}: recurrent aperiodic.
 {e, f, g}: recurrent with period 2.