Problem 1. A Markov chain with state space $S = \{0, 1, 2\}$ has the transition matrix

$$P = \begin{pmatrix} .2 & .3 & .5 \\ 0 & .4 & .6 \\ .7 & .3 & 0 \end{pmatrix}$$

If X_0 has distribution vector (.6, .4, 0), find the distribution vectors of X_1, X_2 .

Solution. Let P be the transition matrix and v the given distribution of X_0 . Then X_i has distribution vP = (.12, .34, .54) and X_2 has distribution $vP^2 = (.402, .334, .264)$.

Problem 2. There are 6 coins on a table, each showing heads (H) or tails (T). In each step we

- Select uniformly one of the coins.
- If it is heads, toss it and replace on the table (with random side).
- If it is tails, toss it. If it comes up heads leave it at that. If if comes up tails, toss it a second time, and leave the result as it is.

Let X_n be the number of heads showing after n such steps.

- (a) Determine the transition probabilities for this Markov chain.
- (b) Draw the transition diagram and write the transition matrix.
- (c) What is $\mathbb{P}(X_2 = 4 | X_0 = 5)$?

Solution.

(a) X decreases by one if we pick a coin showing heads, toss it and it comes tails. This has probability $\frac{X}{6} \cdot \frac{1}{2}$. X increases by one if we pick a coin showing tails, toss it and it comes heads either the first or second try. This has probability $\frac{6-X}{6} \cdot \frac{3}{4}$. Otherwise X stays the same. This gives

$$P_{i,i-1} = \frac{i}{12}$$
 $p_{i,i+1} = \frac{3(6-i)}{24}$ $P_{i,i} = \frac{6+i}{24}$

(b) See figure.

(c)

	<i>(</i> 6	18	0	0	0	0	0
$P = \frac{1}{24}$	2	7	15	0	0	0	0
	0	4	8	12	0	0	0
	0	0	6	9	9	0	0
	0	0	0	8	10	6	0
	0	0	0	0	10	11	3
	$\setminus 0$	0	0	0	0	12	12
	•						

(d) This is

$$P_{54}^2 = P_5 4 P_4 4 + P_5 5 P_5 4 = \frac{10}{24} \frac{10}{24} + \frac{11}{24} \frac{10}{24}$$

© Omer Angel 2022, all rights reserved.

Problem 3. Jaine is a mechanic. Let X_n be the number of cars they need to fix. At each step, with probability 1/2 they manage to fix a car, and X decreases by 1. With probability 1/3 a new car is delivered for service and X increases by 1, and with probability 1/6 nothing happens and X stays the same. If X becomes 0, Jaine goes for lunch. If X becomes 3, the boss gets angry and fires Jaine.

- (a) Suppose $X_0 = 1$. What is the probability that Jaine goes to lunch before they are fired?
- (b) What would be the answer if the boss only fires Jaine when X = 4?

Solution.

(a) Let q_i be the probability of going to lunch without getting fired if there are i cars to fix. Then $q_0 = 1$ and $q_3 = 0$. For the others we have

$$q_1 = \frac{1}{2}q_0 + \frac{1}{3}q_2 + \frac{1}{6}q_1$$
$$q_2 = \frac{1}{2}q_1 + \frac{1}{3}q_3 + \frac{1}{6}q_2$$

The solution to these is $q_1 = \frac{15}{19}, q_2 = \frac{9}{19}$. (b) Replace $q_3 = 0$ by $q_4 = 0$ and $q_3 = \frac{1}{2}q_2 + \frac{1}{3}q_4 + \frac{1}{6}q_3$. The solution now is $q_1 = 57/65, q_2 = 45/65$, $q_3 = 27/65.$

Note. This is exactly the same as the gambler's ruin problem, except that some steps nothing happens. However, such steps do not make a difference to the eventual outcome, so we can consider only the times there is a change. With probability 3/5 X decreases, and with probability 2/5 increases at those times.

Problem 4. Consider the simple random walk on a triangle with vertices $\{0, 1, 2\}$. This is the Markov chain that at each step moves to one of the two states other than X_n . Prove that the *n*-step transition matrix is

$$P^n = \begin{pmatrix} a_n & b_n & b_n \\ b_n & a_n & b_n \\ b_n & b_n & a_n \end{pmatrix},$$

where $a_n = \frac{1+2(-1/2)^n}{3}$ and $b_n = \frac{1-(-1/2)^n}{3}$.

Solution. We prove this by induction. For n = 1 we have $a_1 = 0$ and $b_1 = 1/2$, and indeed this is the transition matrix of the Markov chain. If known for n, we need to show that

$$P \cdot \begin{pmatrix} a_n & b_n & b_n \\ b_n & a_n & b_n \\ b_n & b_n & a_n \end{pmatrix} = \begin{pmatrix} a_{n+1} & b_{n+1} & b_{n+1} \\ b_{n+1} & a_{n+1} & b_{n+1} \\ b_{n+1} & b_{n+1} & a_{n+1} \end{pmatrix},$$

This requires showing that $a_{n+1} = \frac{1}{2}b_n + \frac{1}{2}b_n$ and that $b_{n+1} = \frac{1}{2}a_n + \frac{1}{2}a_n$. Both of these are easy to verify for the given a_n, b_n . (Plug in and check.)

Problem 5. Alfonso, Beatrice, and Coraline play poker. They start with \$1, \$2, \$3 respectively. In each round, one of the three (chosen randomly) does not participate. The other two each bet \$1, and one of the two wins the bet (and the other loses), again randomly and equally likely. If a player has no money, they are eliminated and do not participate in future rounds. Eventually one player has all \$6, and the tournament ends.

- (a) What is the probability that Alfonso is the eventual winner? (Hint: compare Alfonso's money to the gambler's ruin problem.)
- (b) Let q_A be the probability that Alfonso is the first one to be eliminated, and similarly q_B, q_C for Beatrice and Coraline. Compute q_A, q_B, q_C . (Hint: Consider also what happens if the players have 1,1,1,4.)

Solution.

- (a) Alfonso's money in each round where he participates increases or decreases by 1 with equal probability. The probability that Alfonso reaches 6 before reaching 0 is given by the gambler's ruin result to be 1/6.
- (b) Let q_{abc} be the probability that Alfonso is the first eliminated if the amounts they have are a, b, c. If anyone has 0 then either it's Alfonso and the value is 1, or it is someone else and the result is 0. The unknowns are

$q_{114}, q_{123}, q_{132}, q_{141}, q_{213}, q_{222}, q_{231}, q_{312}, q_{321}, q_{411}.$

These can be arranged as in the figure below, and each is the average of the 6 neighbouring values. These can be simplified since $q_{114} = q_{141}$, $q_{123} = q_{132}$, $q_{213} = q_{231}$, $q_{312} = q_{321}$ (since exchanging Beatrice and Coraline makes no difference. Also, $q_{222} = 1/3$ by symmetry. Also, $q_{123} + q_{213} + q_{312} = 1$ since exactly one of the three players must be the first eliminated, and also $q_{411} + 2q_{114} = 1$. Letting $x = q_{123}$, $y = q_{213}$ and $z = q_{114}$, the others are all equal or 1 - x - y or 1 - 2z or 1/3. We get several equations:

$$z = \frac{1}{3} + \frac{1}{6}x + \frac{1}{6}y \qquad x = \frac{1}{3} + \frac{1}{6}y + \frac{1}{6}z + \frac{1}{6}x + \frac{1}{6}\frac{1}{3} \qquad y = \frac{1}{6}z + \frac{1}{6}x + \frac{1}{6}\frac{1}{3} + \frac{1}{6}(1 - x - y)$$

These have solution

$$q_{123} = x = \frac{121}{197}$$
 $q_{212} = y = \frac{51}{197}$ $q_{312} = 1 - x - y = \frac{25}{197}$ $q_{114} = z = \frac{283}{591}$.

