
Stochastic Processes
Assignment 8 solutions

Note: Start each problem on a new page.

Problem 1. Consider the Yule process: a pure birth chain, where the rate of jumping from n to n + 1 is
λn. Suppose X0 = 1.

(a) Write down the backward Kolmogorov equations for Pij(t).
(b) Use these to find P11(t).
(c) Use these to find P12(t).

Solution.
(a) The general equation is P ′ij(t) =

∑
k 6=j qikPkj(t) − viPij(t). The first term is zero unless k = i + 1

(that’s the only jump allowed), so this becomes

P ′ij(t) = λiPi+1,j(t)− λiPij(t).

(b) For i = j = 1 we get
P ′11(t) = λP21(t)− λP11(t).

However, it is impossible to get from 2 to 1, so the first term is 0, and the solution is P11(t) = e−λt.
(This is also proved by noting that this is the probability to not jump by time t, and that’s the only
way to be at 1 at time t.

(c) For i = 1, j = 2 this gives
P ′12(t) = λP22(t)− λP12(t).

As in the previous part we have P22(t) = e−2λt. The solution to f ′(x) = λe2x − λf ′(x) is

f(x) = e−2λx + Ce−x.

Since P12(0) = 0 we must have C = −1 and get P12(t) = e−λt − e−2λt.

Problem 2. A factory has three machines. Each breaks down at rate 1. If any machine is broken, a
repairman works to fix it, and fixes at rate 2. Let Xt be the number of operational machines at time t.
What is the limit probability for having no working machine? What is the limit probability for having all
machines working?

Solution. The states are 0, 1, 2. The transition rates are

q21 = 2 q10 = 1 q01 = 2 q12 = 2.

(I will also accept the interpretation with q01 = 4.)
The equations for the limit probabilities are

2P0 = P1 3P1 = 2P0 + 2P2 2P2 = 2P1,

and P0 + P1 + P2 = 1. The solution is P0 = 1/5, P1 = P2 = 2/5.

Problem 3. (Ross: 6.32): Customers arrive at a two-server station in accordance with a Poisson process
having rate λ. Upon arriving, they join a single queue. Whenever a server completes a service, the person
first in line enters service. The service times of server i are exponential with rate µi, i = 1, 2, where
u1 + µ2 > λ. An arrival finding both servers free is equally likely to go to either one. Define an appropriate
continuous-time Markov chain for this model, show it is time reversible, and find the limiting probabilities.
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Solution. Let Xt be the total number of customers in the queue (including those being serviced). If
there is only one being serviced, then we also need to know which server they are with, so the states are
{0, a = 11, b = 12, 2, 3, 4, . . . , with 1i meaning the single customer is with server i. The Transition rates are
as follows. Arrivals give

q0,a = q0,b = λ/2, qa,2 = qb,2 = qn,n+1 = λ.

Services give
qa,0 = q2,b = µ1 qb,0 = q2,a = µ2, qn+1,n = µ1 + µ2.

(n ≥ 2 can be anything.) For reversibility with limit probabilities Pi we need to have Piqij = Pjqji for all
pairs of states. The non-zero equations are

Pn+1(µ1 + µ2) = Pnλ for n ≥ 2,

and
P0λ/2 = Paµ1 P0λ/2 = Pbµ2 Pbλ = P2µ1 Paλ = P2µ2.

These are solved by

Pa =
λ

2µ1
P0 Pb =

λ

2µ2
P0 P2 =

λ2

2µ1µ2
P0 Pn =

(
λ

µ1 + µ2

)n−2
P2

for n ≥ 2.

These have sum P0

(
1 + λ

2µ1
+ λ

2µ2
+ λ2

2µ1µ2(1−λ/(µ1+µ2))

)
, which determines P0.

Problem 4. (Ross: 6.33) Consider two M/M/1 queues with respective parameters λi, µi for i = 1, 2.
Suppose they share a common waiting room that can hold at most three customers. That is, whenever an
arrival finds her server busy and three customers in the waiting room, she goes away. Find the limiting
probability that there will be n queue 1 customers and m queue 2 customers in the system.

Solution. This problem is unclear and has several interpretations.. Let (a, b) be the state with i customers
for server 1 and b for server 2. The possible states are (a, b) with a + b ≤ 3. There are 10 states overall.
The transitions: Increase a at rate λ1 if possible. Increase b at rate λ2 if possible. Decrease a at rate µ1 if
possible. Decrease b at rate µ2 if possible.

The equations for the limit probabilities:

P00 = µ1P10 + µ2P01

P01 = λ2P00 + µ1P11 + µ2P02

P02 = λ2P01 + µ1P12 + µ2P03

P03 = λ2P02

P10 = λ1P00 + µ1P20 + µ2P11

P11 = λ1P01 + λ2P10 + µ1P21 + µ2P12

P12 = λ1P02 + λ2P11

P20 = λ1P10 + µ1P30 + µ2P21

P21 = λ1P11 + λ2P20

P30 = λ1P20

These can be solved though it is messy. It is much easier if we guess reversibility. In that case we find

that Pab =
(
λ1

µ1

)a (
λ2

µ2

)b
is a solution to detailed balance, and it can be normalized to have sum 1.
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Problem 5. A factory has N identical machines. When a machine breaks down, its operator immediately
begins to repair it. Each machine breaks down at rate µ, and each repair independently takes an exponential
time of rate λ. Let X(t) denote the number of machines that are working at time t. This defines a birth
and death process.

(a) Determine the birth and death rates.
(b) Determine the limiting probabilities. (It is a certain binomial distribution.)
(c) Suppose that N = 50, λ = 10, µ = 1. What is the average number of machines that are operating, in

the long run?

Solution.
(a) The birth rate is λn = λ(N − n).
(b) The death rate is µn = µn.
(c) Detailed balance gives Pn+1 = Pn

λn

µn+1
, so

Pn = P0
λ0 . . . λn−1
µ1 . . . µn

= P0
λnN(N − 1) . . . (N − n+ 1)

µnn!
= P0

(
N

n

)
λn

µn
.

From this we deduce that P0 = (1 + µ/λ)−N , and hence

Pn =

(
N

n

)
an(1− a)N−n

with a = λ/(λ+ µ). This is Bin(N, a).
(d) Here the limit probabilities are Bin(50, 10/11), so the average number of working machines is 500/11.
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