MATH 318 — Final exam solutions — 2019

Note: These solutions may not include all details expected from you.

- 1. A random variable X has p.d.f. $\frac{x+2}{4}$ on [-1,1] and 0 outside [-1,1].
 - (a) What is the expectation $\mathbf{E}X$?
 - (b) What is the variance $\operatorname{Var} X$?
 - (c) What is the characteristic function of X?

Solution: Compute the following integrals:

(a) $E[X] = \int_{-1}^{1} \frac{x+2}{4} x \, dx.$ (b) $\operatorname{Var}(X) = \int_{-1}^{1} \frac{x+2}{4} x^2 \, dx - (E[X])^2.$ (c) $\phi(t) = \int_{-1}^{1} \frac{x+2}{4} e^{itx} dx.$

- 2. A committee of 7 people is chosen randomly out of a group of 60. Of the 60, Dorothy has 20 friends and 15 enemies. Let X be the number of friends of Dorothy in the committee and Y the number of enemies.
 - (a) Find $P(X \ge 5)$, and $P(Y \ge 5)$.
 - (b) Find $P(\{X \ge 5\} \cup \{Y \ge 5\})$?
 - (c) What is E(X Y)?
 - (d) What is E(X|Y = y)?

Solution:

- (a) $P(X \ge 5) = \frac{\binom{20}{5}\binom{40}{2} + \binom{20}{6}\binom{40}{1} + \binom{20}{7}\binom{40}{0}}{\binom{60}{7}}$. For Y, replace 20, 40 by 15, 45.
- (b) By inclusion-exclusion, this is $P(X \ge 5) + P(Y \ge 5) P(X, Y \ge 5)$. The last is 0, so tadd up the two answers for (a).
- (c) Each has probability 1/3 of being a friend and 1/4 of being an enemy, so E[X] = 7/3 and E[Y] = 7/4, and the difference is E[X - Y] =7/12.
- (d) If y of the seven are enemies, each remaining one has probability 20/45 of being a friend, so $E(X|Y = y) = \frac{20(7-y)}{45}$
- 3. Let X, Y be independent exponential variables with parameters λ . Compute all integrals in the following.
 - (a) Find E[XY].
 - (b) Find P(X > Y + 2).

- (c) Find the density function of X Y.
- (d) Find the characteristic function of X Y.

Solution:

- (a) $E[XY] = E[X]E[Y] = 1/\lambda^2$. (b) $P(X \ge Y + 2) = \int_0^\infty \int_y +2^\infty \lambda^2 e^{-\lambda x} dx dy = e^{-2\lambda}/2$. (c) This is $\phi_X(t)\phi_Y(-t) = \frac{\lambda}{\lambda it} \frac{\lambda}{\lambda + it} = \frac{\lambda^2}{\lambda^2 + t^2}$.
- 4. Customers arrive at a store according to a Poisson process with rate $\lambda = 6$ per hour. The store is open from 8:00 to 18:00.
 - (a) What is the probability that at least two customers arrive between 8:00 and 8:30?
 - (b) Use the Central limit theorem to estimate the probability that at most 50 customers come in a day. You may use Φ in your answer.
 - (c) What is the expected number of customers arriving before noon?
 - (d) What is the expected number of customers arriving all day, conditioned on 30 customers arriving before noon?

Solution:

- (a) $P(\text{Poi}(3) \ge 2) = 1 e^{-3} 3e^{-3}$.
- (b) In a day we have $X = \text{Poi}(60) \approx N(60, 60)$. Therefore $P(X < 50) \approx$ $\Phi(-10/60)$. (A better approximation is $\Phi(-9.5/60)$.
- (c) 24.
- (d) 30 before noon, plus an independent Poi(36) after noon gives 66.
- 5. Jack and Jill are magicians, who perform the following trick. A volunteer picks a card, and Jack or Jill makes a prediction what the card is.
 - (a) Jack is not very talented, and the trick succeeds only 1% of the time. Use the Poisson approximation to estimate the probability that the trick succeeds exactly three times out of 200 attempts.
 - (b) Jill succeeds at the same trick 200 out of 1000 independent attempts, give a 95% confidence interval for the probability that she succeeds at each attempt.

Solution:

- (a) This is $P(\text{Poi}(2) = 3) = e^{-2}2^3/3!$.
- (b) The measurement is 0.2. If the actual value is p then its Variance is $\sqrt{p(1-p)/n}$. Since p is roughly 0.2, this is $\sqrt{(0.2)(0.8)/1000)} =$ $\sqrt{0.00016}$. The confidence interval is $0.2 \pm (1.96)\sqrt{0.00016}$.
- 6. Biking to work takes Martha a normal $N(23, 2^2)$ number of minutes. The subway takes a fixed 15 minutes, plus the random waiting time for the train which is Exp(0.2). Martha takes the bus with probability 1/3 each day. If the trip takes more than 25 minutes, she is late.
 - (a) What is the probability that Martha is late for work on any day?
 - (b) What is the probability she took the bus, conditioned on her being late?
 - (c) What is the Variance of Martha's travel time?

Solution:

- (a) When cycling it is $1 \Phi(1)$. With the bus it is e^{-2} . Together it is (a) Which by omight is $1^{-2} \cdot (1/2)^{-1}$ (2/3) $(\Phi(-1)) + (1/3)e^{-2}$. (b) By Bayes: $\frac{(1/3)e^{12}}{(2/3)(\Phi(-1)) + (1/3)e^{-2}}$ (c) The expectation is 22. Also, $\mathbf{E}X^2 = (2/3)(23^2 + 2^2) + (1/3)(15^2 + 2^2)$
- $15 \cdot 5 + 2 \cdot 5^2$), so the variance i this minus 22^2 .
- 7. A random variable X has characteristic function $\phi(t) = \frac{\cos(t)}{1+t^2}$. Compute the following: (a) E[X]. (b) $\operatorname{Var}(X)$. (c) $E[X^4]$.

Solution: The Taylor expansion is $\phi(t) = 1 - (3/2)t^2 + (3/4)t^4 + O(t^6)$. This gives E[X] = 0, $E[X^2]/2 = 3/2$ and $E[X^4]/4! = 3/4$. Therefore Var(X) = 3 and $E[X^4] = 18$.

8. Consider a Markov chain with states $\{1, 2, 3, 4, 5, 6\}$ and the following transition probability matrix:

$\int 0$	1/2	1/2	0	0	0)
$\begin{pmatrix} 0\\ 1/3 \end{pmatrix}$	2/3	0	0	0	0
1/2	0	1/2	0	0	0
0	0	0	0	0	1
0	0	1/3	0	1/3	1/3
$\int 0$	0	0	1/2		1/2

- (a) Draw a transition diagram for the Markov chain.
- (b) If $X_0 = 5$, what is the distribution of X_2 (write it as a vector)?
- (c) What are the communicating classes? For each communicating class, determine if it is transient or recurrent and whether it is periodic or aperiodic.
- (d) Find a stationary distribution with $\pi_6 = 0$ (write it as a vector).
- (e) If $X_0 = 1$, what is the expected time before the chain returns to 1?

Solution:

- (a) Drawing.
- (b) The 5th row of P^2 is (1/6, 0, 1/6 + 1/9, 1/6, 1/9, 1/9 + 1/6).
- (c) $\{1, 2, 3\}$ is recurrent aperiodic. $\{4, 6\}$ as well. $\{5\}$ is transient, aperiodic.
- (d) Since $\pi_6 = 0$, also $\pi_4 = \pi_5 = 0$. Solve $\pi = \pi$ with $\pi_1 + \pi_2 + \pi_3 = 1$ gives $\pi = (2/7, 3/7, 2/7, 0, 0, 0)$.
- (e) This is $1/\pi_1 = 7/2$.
- 9. A random walk on a graph has state space the nodes of the graph. From each node, it moves to a connected node, with equal probability for each connected node. (If x has degree d_x , and x, y are connected, then $P_{x,y} = 1/d_x$.)
 - (a) Define: a Markov chain is reversible with respect to a measure π .
 - (b) Show that the random walk on the graph below is reversible with respect to some distribution π , and find that π .
 - (c) Find the asymptotic fraction of time the random walk spends at the topmost vertex in this graph.

Solution:

- (a) $\pi_x P_{xy} = \pi_y P_{yx}$ for every pair of states.
- (b) If x, y are connected, detailed balance gives $\pi_x/d_x = \pi_y/d_y$, so $\pi_x = cd_x$ for some c, which must be the sum of the degrees. This choice of π works.
- (c) This is $\pi_x = 2/20$ in this case.